Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 61.70 ; 61.80
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Transmission electron microscopy, optical reflection and channeling effect measurements are employed to investigate disorders in 30 keV, high dose (3×1016ions/cm2) and high current (≦5 mA) phosphorus as-implanted silicon with (111), (100), and (110) orientation as a function of temperature rise (100–850°C) by the beam heating effect during implantation. Temperature rise below 400°C results in continuous amorrphous layer formation. This contrasts with results of the recovery into single crystals for temperature rise samples above 500°C, regardless of wafer orientation. Secondary defects (black-dotted defects, dislocation loops and rodlike defects) are formed in singlecrystal recovery samples, having a deeper distribution in (110) wafers and a shallower distribution in (111) and (100) wafers. Rodlike defects observed in 850°C samples are of “vacancy” type and have the largest density in (110) wafers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...