Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atherosclerosis, cellular pathophysiology  (1)
  • 1
    ISSN: 1615-5947
    Keywords: Atherosclerosis, cellular pathophysiology ; endothelial cell hypoxia ; transforming growth factor beta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Hypoxic injury of vascular endothelial cells is hypothesized to be the initial cellular event in the formation of an atherosclerotic lesion. We studied the effect of various oxygen tensions on rabbit aortic endothelial cells in culture to determine macrophage adhesion and analyzed endothelial cell-conditioned media for fibroblast mitogenesis and transforming growth factor beta production. Fibroblast mitogenesis assay of endothelial cell-conditioned media revealed decreased activity at lower oxygen tensions. Further study revealed an inverse relationship between oxygen tension and aortic endothelial cell production of transforming growth factor beta despite lower total numbers of viable aortic endothelial cells at lower oxygen tensions. When rabbit aortic endothelial cells grown at various oxygen tensions were incubated with five day old bone marrow macrophages, an increase in macrophage adherence to aortic endothelial cells was noted at low oxygen tensions. Our observations suggest that aortic endothelial cell hypoxia leads to the production of transforming growth factor beta, a known monocyte chemoattractant. Monocytes may marginate and then adhere to endothelial cells, their adherence being augmented by endothelial cell hypoxia. This may contribute to the initial cellular events in the formation of an atherosclerotic lesion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...