Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 346 (1992), S. 515-522 
    ISSN: 1432-1912
    Keywords: Calcitonin gene-related peptide ; Smooth muscle cells ; Vas deferens - Membrane currents ; Ca2+ channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Effects of calcitonin gene-related peptide (CGRP), a putative non-adrenergic non-cholinergic neutrotransmitter on the electrical properties of the cell membrane, were investigated in enzymically dispersed smooth muscle cells from rat vas deferens. Under current clamp conditions, CGRP (up to 10−7 M) did not induce significant changes in membrane potentials or input resistance in the resting state. The configurations of action potentials elicited by depolarizing current pulses were also unaffected, except that a prolongation of the duration of the action potentials by a high dose (10−7 M) of CGRP was observed in some of the cells. Under whole cell voltage clamp conditions, the transient and sustained K+ currents, activated by depolarizing voltage-steps, were apparently decreased in the presence of 10−9 to 10−7 M CGRP. The peptide increased the voltage-gated Ca2+ current in cells loaded with 145 mM Cs+ solution in order to block the K+ currents. The voltage-dependency of the peak Ca2+ current was not changed by CGRP. Ba2+ (10.8 mM) was used as a charge carrier for the Ca2+-channel current to clarify further the effects of CGRP on the properties of the current. CGRP (10−8 M) delayed the inactivation time course of the Ca2+-channel current and slowed the recovery from inactivation. The peptide did not affect the steady-state inactivation measured by changing the holding potential. The Ca2+-channel current in the presence of CGRP was suppressed by nicardipine (10−6 M) to the same extent as the current under control conditions. The results suggest that CGRP modifies the L-type Ca2+ channel in smooth muscle cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...