Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Ruthenium ; DNA ; N-glycolysis ; Disproportionation ; Cleavage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  DNA binding by trans-[(H2O)(Pyr)(NH3)4RuII]2+ (Pyr=py, 3-phpy, 4-phpy, 3-bnpy, 4-bnpy) is highly selective for G7 with K G=1.1×104 to 2.8×104, with the more hydrophobic Pyr ligands exhibiting slightly higher binding. A strong dependence on ionic strength indicates that ion-pairing with DNA occurs prior to binding. At μ=0.05, d[RuII-DNA]/dt=k[RuII][DNA], where k=0.17–0.21 M–1 s–1 with the various Pyr ligands. The air oxidation of [(py)(NH3)4RuII] n -DNA to [(py)(NH3)4RuIII] n -DNA at pH 6 occurs with a pseudo-first-order rate constant of k obs=5.6×10–4 s–1 at μ=0.1, T=25  °C. Strand cleavage of plasmid DNA appears to occur by both Fenton/Haber-Weiss chemistry and by base-catalyzed routes, some of which are independent of oxygen. Base-catalyzed cleavage is more efficient than O2 activation at neutral pH and involves the disproportionation of covalently bound RuIII and, in the presence of O2, Ru-facilitated autoxidation to 8-oxoguanine. Disproportionation of [py(NH3)4RuIII] n -DNA occurs according to the rate law: d[RuII–GDNA]/dt=k 0[RuIII–GDNA]+k 1[RuIII–GDNA][OH–], where k 0=5.4×10–4 s–1 and k 1=8.8 M–1 s–1 at 25  °C, μ=0.1. The appearance of [(Gua)(py)(NH3)4RuIII] under argon, which occurs according to the rate law: d[RuIII–G]/dt=k 0[RuIII–GDNA]+k 1[OH–][RuIII–GDNA] (k 0=5.74×10–5 s–1, k 1=1.93×10–2 M–1 s–1 at T=25  °C, μ=0.1), is consistent with lysis of the N-glycosidic bond by RuIV-induced general acid hydrolysis. In air, the ratio of [Ru-8-OG]/[Ru-G] and their net rates of appearance are 1.7 at pH 11, 25  °C. Small amounts of phosphate glycolate indicate a minor oxidative pathway involving C4′ of the sugar. In air, a dynamic steady-state system arises in which reduction of RuIV produces additional RuII.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...