Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 52 (2001), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Soil contains the major part of carbon in terrestrial ecosystems, but the response of this carbon to enriching the atmosphere in CO2 and to increased N deposition is not completely understood. We studied the effects of CO2 concentrations at 370 and 570 μmol CO2 mol−1 air and increased N deposition (7 against 0.7 g N m−2 year−1) on the dynamics of soil organic C in two types of forest soil in model ecosystems with spruce and beech established in large open-top chambers containing an acidic loam and a calcareous sand. The added CO2 was depleted in 13C and thus the net input of new C into soil organic carbon and the mineralization of native C could be quantified.Soil type was the greatest determining factor in carbon dynamics. After 4 years, the net input of new C in the acidic loam (670 ± 30 g C m−2) exceeded that in the calcareous sand (340 ± 40 g C m−2) although the soil produced less biomass. The mineralization of native organic C accounted for 700 ± 90 g C m−2 in the acidic loam and for 2800 ± 170 g C m−2 in the calcareous sand. Unfavourable conditions for mineralization and a greater physico-chemical protection of C by clay and oxides in the acidic loam are probably the main reasons for these differences. The organic C content of the acidic loam was 230 g C m−2 more under the large than under the small N treatment. As suggested by a negligible impact of N inputs on the fraction of new C in the acidic loam, this increase resulted mainly from a suppressed mineralization of native C. In the calcareous sand, N deposition did not influence C concentrations. The impacts of CO2 enrichment on C concentrations were small. In the uppermost 10 cm of the acidic loam, larger CO2 concentrations increased C contents by 50–170 g C m−2. Below 10 cm depth in the acidic loam and at all soil depths in the calcareous sand, CO2 concentrations had no significant impact on soil C concentrations. Up to 40% of the ‘new’ carbon of the acidic loam was found in the coarse sand fraction, which accounted for only 7% of the total soil volume. This suggests that a large part of the CO2-derived ‘new’ C was incorporated into the labile and easily mineralizable pool in the soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Estuarine and Coastal Marine Science 14 (1982), S. 577-587 
    ISSN: 0302-3524
    Keywords: Netherlands coast ; Saint Lawrence esturary ; estuaries ; geochemistry ; lithium ; mixing
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geography , Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0031-9163
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...