Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Source
Language
  • 1
    Publication Date: 2022-03-14
    Description: This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: Strong branching is an important component of most variable selection rules in branch-and-bound based mixed-integer linear programming solvers. It predicts the dual bounds of potential child nodes by solving auxiliary LPs and thereby helps to keep the branch-and-bound tree small. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Computational experiments on standard MIP instances indicate that this is beneficial in three aspects: It helps to reduce the average number of LP iterations per strong branching call, the number of branch-and-bound nodes, and the overall solving time.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-14
    Description: Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: Presolving attempts to eliminate redundant information from the problem formulation and simultaneously tries to strengthen the formulation. It can be very effective and is often essential for solving instances. Especially for mixed integer programming problems, fast and effective presolving algorithms are very important. In this paper, we report on three new presolving techniques. The first method searches for singleton continuous columns and tries to fix the corresponding variables. Then we present a presolving technique which exploits a partial order of the variables to induce fixings. Finally, we show an approach based on connected components in graphs. Our computational results confirm the profitable use of the algorithms in practice.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: In this article we describe the impact from embedding a 15 year old model for solving the Steiner tree problem in graphs in a state-of-the-art MIP-Framework, making the result run in a massively parallel environment and extending the model to solve as many variants as possible. We end up with a high-perfomance solver that is capable of solving previously unsolved instances and, in contrast to its predecessor, is freely available for academic research.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-14
    Description: Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 % of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Description: Strong branching is an important component of most variable selection rules in branch-and-bound based mixed-integer linear programming solvers. It predicts the dual bounds of potential child nodes by solving auxiliary LPs and thereby helps to keep the branch-and-bound tree small. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Computational experiments on standard MIP instances indicate that this is beneficial in three aspects: It helps to reduce the average number of LP iterations per strong branching call, the number of branch-and-bound nodes, and the overall solving time.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...