Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Language
  • 1
    Publication Date: 2020-08-05
    Description: Mixed integer programming is a versatile and valuable optimization tool. However, solving specific problem instances can be computationally demanding even for cutting-edge solvers. Such long running times are often significantly reduced by an appropriate change of the solver's parameters. In this paper we investigate "algorithm selection", the task of choosing among a set of algorithms the ones that are likely to perform best for a particular instance. In our case, we treat different parameter settings of the MIP solver SCIP as different algorithms to choose from. Two peculiarities of the MIP solving process have our special attention. We address the well-known problem of performance variability by using multiple random seeds. Besides solving time, primal dual integrals are recorded as a second performance measure in order to distinguish solvers that timed out. We collected feature and performance data for a large set of publicly available MIP instances. The algorithm selection problem is addressed by several popular, feature-based methods, which have been partly extended for our purpose. Finally, an analysis of the feature space and performance results of the selected algorithms are presented.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...