Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Reading, MA u.a. :Addison-Wesley,
    Title: Design & efficiency; Vol. 1
    Author: Moret, Bernard M.E.
    Contributer: Shapiro, Henry D.
    Publisher: Reading, MA u.a. :Addison-Wesley,
    Year of publication: 1991
    Pages: 576 S.
    Series Statement: Algorithms from P to NP Vol. 1
    Type of Medium: Book
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-03
    Description: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 43 (1939), S. 397-397 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 15 (1972), S. 771-775 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 2644-2651 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A detailed study of tungsten low-pressure etching in a helicon source reactor was performed. In correlation with surface analyses (transmission electronic microscope, Rutherford backscattering, nuclear reaction analysis), a complete parametric study of the plasma and etching parameters versus the macroscopic parameters [gas pressure, radio frequency (rf) power, substrate bias voltage) has been carried out. Using a model developed by Hoffman and Heinrich for silicon etching (Proceedings of the 9th ISPC, Pugnochiuso, Italy, 1989, p. 1003), and taking into account the experimental results, it has been shown that tungsten etching mechanisms can be expressed by the formation and destruction of a low-density reactive top layer. Sputtering of this layer under argon-ion bombardment has been studied by optical emission spectroscopy. Consequently, the tungsten etch rate can be expressed as an analytical function of the macroscopic parameters such as gas pressure, rf power, and substrate bias voltage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 3107-3113 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new method is presented for calculating chemical potentials using integral equation theories. The method uses a multistep charging process which allows attractive and repulsive contributions to the chemical potential to be determined separately. The hybrid mean spherical approximation is used to provide needed correlations about the test particle. A novel application of particle scaling is used to determine the repulsive, or cavity formation contribution to the chemical potential. A formal definition is given for the effective hard core diameter of a softly repulsive solute molecule. A simple Kirkwood charging process is used to determine the attractive, or solvent–solute binding contribution to the chemical potential. The use of an integral equation theory for estimating the test particle correlation functions allows chemical potentials and solvent–solute bindings to be determined in nonideal mixtures at supercritical conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 3114-3131 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Presented are the results of testing the method for estimating chemical potentials which was described in paper I. The method, which is based on scaled particle theory, provides accurate chemical potentials in mixtures of softly repulsive particles when used with the Rogers–Young integral equation. Calculated excess Gibbs energies agreed with simulations to an average of −0.67% for 2:1 diameter ratio mixtures. The method provides approximate results in Lennard-Jones mixtures when used with the hybrid mean spherical approximation integral equation theory. Results for supercritical isotherms reproduce simulation data to an average of −3.0%. For subcritical isotherms, vapor results are exact while liquid results are qualitatively correct. The method used with the integral equation theory correctly predicts the effect of energy ratio on the Henry's Law constant. The predicted effect of size ratio on the constant has an incorrect slope at subcritical temperatures when the solvent density is near the value for a saturated liquid. The incorrect slope results from inaccuracies in the predicted correlation functions for the fluid surrounding the test particle. The method allows estimates to be made of the work of cavity formation and of the strength of solvent–solute binding in near-critical mixtures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 11 (1999), S. 2078-2088 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Three-dimensional steady flows are simulated in a circular cylindrical cavity of aspect ratio A=H/D, where H is the height and D the diameter of the cavity. The cavity is heated from below and its sidewalls are considered to be adiabatic. The effect of the geometry of the cavity on the onset of convection and on the structure and symmetries of the flow is analyzed. The nonlinear evolution of the convection beyond its onset is presented through bifurcation diagrams for two typical aspect ratios A=0.5 and A=1. Axisymmetric (m=0) and asymmetric (m=1 and m=2) azimuthal modes [exp (imφ)] are observed. For A=0.5, the axisymmetric solution loses its stability to a three-dimensional solution at a secondary bifurcation point. Better understanding of the mechanisms leading to this instability is obtained by analyzing the energy transfer between the basic state and the critical mode. To study the influence of the Prandtl number on the flow pattern and on the secondary bifurcation, three values of the Prandtl number are investigated: Pr=0.02 (liquid metal), Pr=1 (transparent liquids), and Pr=6.7 (water). © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 11 (1999), S. 2089-2100 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of a constant and uniform magnetic field on electrically conducting liquid-metal flow, in cylindrical cavities heated from below, is numerically analyzed by using a spectral element method to solve the three-dimensional Navier–Stokes and Ohm equations. The cavity is characterized by its aspect ratio defined as A=H/D. The lateral surfaces are adiabatic and all the boundaries are electrically insulating. The flow with a vertical magnetic field has the same symmetries as that without a magnetic field, so that similar convective modes (m=0, m=1, and m=2) occur, but they are not equally stabilized. Here m is the azimuthal wave number. For A=0.5, for sufficiently large values of the Hartmann number Ha, the mode m=2 becomes the critical mode in place of m=0. The horizontal magnetic field breaks some symmetries of the flow. The axisymmetric mode disappears giving an asymmetric mode m=02, i.e., a combination of the m=0 and m=2 modes, whereas the asymmetric modes (m=1 and m=2), which were invariant by azimuthal rotation without a magnetic field, now have two possible orientations, either parallel or perpendicular to the applied magnetic field B. These five modes are differently stabilized, weakly if the axis of the rolls is parallel to B and strongly if the axis is perpendicular. Beyond the primary thresholds, the secondary bifurcation, found in the pure thermal case for A=0.5, becomes an imperfect bifurcation consisting of two disconnected branches.© 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 10 (1992), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Waterman Metamorphic Complex of the central Mojave Desert was exposed as a consequence of early Miocene detachment-dominated extension. However, it has evidence consistent with a more extensive geological history that involves collision of a crustal fragment(s), tectonic thickening by overthrusting and two periods of extension. The metamorphic complex contains granitoid intrusives and felsic mylonitic gneisses as well as polymetamorphic rocks that include marble, calc-silicate, quartzite. mafic granulite, pyribolite, amphibolite, migmatite and biotite schist. The latter group of rocks was affected by an initial series of high-grade metamorphic events (M1 and M2) and a localized lower grade overprint (M3). The initial metamorphism (M1) can be separated into two stages along its high-grade P–T path: M1a, a granulite facies metamorphism at 800–850° C and 7.5–9 kbar and Mlb, an upper amphibolite facies overprint at 750–800° C and 10–12 kbar. M1a developed mineral assemblages and textures consistent with granulite facies conditions at a reduced activity of H2O and is associated with intense ductile deformation (D1) and minor local partial melting. M1b overprinted the granulite assemblages with a series of hydrous phases under conditions of increasing pressure and H2O activity and is accompanied by little or no deformation. M2 developed at lower pressures and temperatures (650–750° C, 4.5–5.5 kbar) and is distinguished by a second local overprint of hydrous phases that reflects an input of aqueous fluids probably associated with the intrusion of a series of granitic dykes and veins. Effects of M3 are confined to the Mitchel detachment zone, an anastomosing early Miocene detachment fault, and are characterized by local ductile/brittle deformation (D2) of the pre-existing high-grade rocks and granitoid intrusives and by the production of mylonites and mylonitic gneisses under greenschist facies conditions (300–350° C, 3–5 kbar). The initial overprint (M1a) represents metamorphism, devolatilization and minor partial melting of supracrustal rocks under granulite facies conditions as a consequence of tectonic and, possibly, magmatic thickening. The increasing pressure transition of M1a to M1b reflects a period of continued compressional tectonism, thrusting and influx of H2O, in part, locally related to crystallization of partial melts. The near isothermal decompression between M1b and M2 probably represents a pre-112-Ma extensional episode that may have been the result of a decompressional readjustment of a thickened crust. Following the initial extensional event, the metamorphic complex remained at depths of 10–17 km for at least 90 Ma until it was uplifted following Miocene extension. M3 develops locally in response to this second extensional period resulting from the early Miocene detachment faulting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...