Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Source
Years
Language
  • 1
    Publication Date: 2023-01-28
    Description: Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-06
    Description: The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem specific. In contrast, this paper introduces a general purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This is achieved by transforming various problem variants into a general form and solving them using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-06
    Description: SCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-06
    Description: The tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to satisfy operational constraints. The aim of this paper is to develop an operationally flexible method, based upon the one-day routes business model, to compute tail assignments that satisfy short-range—within the next three days—aircraft maintenance requirements. While maintenance plans commonly span multiple days, the methods used to compute tail assignments for the given plans can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by using solutions from the one-day routes aircraft maintenance routing approach as input. The daily tail assignment problem is solved with an objective to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A computational study will be performed to assess the performance of exact and heuristic solution algorithms that modify the input lines-of-flight to reduce maintenance misalignments. The daily tail assignment problem and the developed algorithms are demonstrated to compute solutions that effectively satisfy maintenance requirements when evaluated using input data collected from three different airlines.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-06
    Description: The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-06
    Description: The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-06
    Description: Schedule disruptions are commonplace in the airline industry with many flight-delaying events occurring each day. Recently there has been a focus on introducing robustness into airline planning stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved using column generation in the master and subproblems of the Benders' decomposition. We implement a two-phase algorithm for the Benders' decomposition and identify pareto-optimal cuts. The RRTAP includes costs due to flight delays, cancellation, and passenger rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare our tail assignment solution against current approaches from the literature. Using airline data we demonstrate that by developing a better tail assignment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-06
    Description: Airline recovery presents very large and difficult problems requiring high quality solutions within very short time limits. To improve computational performance, the complete airline recovery problem is generally formulated as a series of sequential stages. While the sequential approach greatly simplifies the complete recovery problem, there is no guarantee of global optimality or solution quality. To address this, there has been increasing interest in the development of efficient solution techniques to solve an integrated recovery problem. In this paper, an integrated airline recovery problem is proposed by integrating the schedule, crew and aircraft recovery stages. To achieve short runtimes and high quality solutions, this problem is solved using column-and-row generation. Column-and-row generation achieves an improvement in solution runtimes by reducing the problem size and thereby achieving a faster execution of each LP solve. Further, the results demonstrate that a good upper bound achieved early in the solution process, indicating an improved solution quality with the early termination of the algorithm. This paper also details the integration of the row generation procedure with branch-and-price, which is used to achieve integral optimal solutions. The benefits of applying column-and-row generation to solve the integrated recovery problem are demonstrated with a comparison to a standard column generation technique.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-06
    Description: Schedule disruptions require airlines to intervene through the process of recovery; this involves modifications to the planned schedule, aircraft routings, crew pairings and passenger itineraries. Passenger recovery is generally considered as the final stage in this process, and hence passengers experience unnecessarily large impacts resulting from flight delays and cancellations. Most recovery approaches considering passengers involve a separately defined module within the problem formulation. However, this approach may be overly complex for recovery in many aviation and general transportation applications. This paper presents a unique description of the cancellation variables that models passenger recovery by prescribing the alternative travel arrangements for passengers in the event of flight cancellations. The results will demonstrate that this simple, but effective, passenger recovery approach significantly reduces the operational costs of the airline and increases passenger flow through the network. The integrated airline recovery problem with passenger reallocation is solved using column-and-row generation to achieve high quality solutions in short runtimes. An analysis of the column-and-row generation solution approach is performed, identifying a number of enhancement techniques to further improve the solution runtimes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-06
    Description: This paper presents a novel application of operations research techniques to the analysis of HIV Env gene sequences, aiming to identify key features that are possible vaccine targets. These targets are identified as being critical to the transmission of HIV by being present in early transmitted (founder) sequences and absent in later chronic sequences. Identifying the key features of Env involves two steps: first, calculating the covariance of amino acid combinations and positions to form a network of related and compensatory mutations; and second, developing an integer program to identify the smallest connected subgraph of the constructed covariance network that exhibits a set covering property. The integer program developed for this analysis, labelled the unrooted set covering connected subgraph problem (USCCSP), integrates a set covering problem and connectivity evaluation, the latter formulated as a network flow problem. The resulting integer program is very large and complex, requiring the use of Benders' decomposition to develop an efficient solution approach. The results will demonstrate the necessity of applying acceleration techniques to the Benders' decomposition solution approach and the effectiveness of these techniques and heuristic approaches for solving the USCCSP.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...