Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 619-641 
    ISSN: 0271-2091
    Keywords: convective transport ; monotonicity ; finite volume ; boundary-fitted co-ordinates ; turbulence modelling ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A formally third-order accurate finite volume upwind scheme which preserves monotonicity is constructed. It is based on a third-order polynomial interpolant in Leonard's normalized variable space. A flux limiter is derived using the fact that there exists a one-to-one map between normalized variable and TVD spaces. This scheme, which is relatively simple and quite compact, is implemented in a staggered general co-ordinates finite volume algorithm including the standard k-ε model and applied to the turbulence transport equations. A number of test problems demonstrate the utility of the proposed scheme. It is shown that in cases where turbulence convection is dominant, the application of a higher-order monotone convection scheme to the turbulence equations leads to results which are more accurate than those obtained using the first-order upwind scheme.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 621-640 
    ISSN: 0271-2091
    Keywords: finite volume ; curvilinear co-ordinates ; staggered grid ; turbulent recirculating flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A brief review of the computation of incompressible turbulent flow in complex geometries is given. A 2D finite volume method for the calculation of turbulent flow in general curvilinear co-ordinates is described. This method is based on a staggered grid arrangement and the contravariant flux componets are chosen as primitive variables. Turbulence is modelled either by the standard k-ε model or by a k-ε model based on RNG theory. Convection is approximated with central differences for the mean flow quantities and a TVD-type MUSCL scheme for the turbulence equations. The sensitivity of the method to the grid properties is investigated. An application of this method to a complex turbulent flow is presented. The results of computations are compared with experimental data and other numerical solutions and are found to be satisfactory.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...