Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In response to starvation, Myxococcus xanthus undergoes a multicellular developmental process that produces a dome-shaped fruiting body structure filled with differentiated cells called myxospores. Two insertion mutants that block the final stages of fruiting body morphogenesis and reduce sporulation efficiency were isolated and characterized. DNA sequence analysis revealed that the chromosomal insertions are located in open reading frames ORF2 and asgE, which are separated by 68 bp. The sporulation defect of cells carrying the asgE insertion can be rescued phenotypically when co-developed with wild-type cells, whereas the sporulation efficiency of cells carrying the ORF2 insertion was not improved when mixed with wild-type cells. Thus, the asgE insertion mutant appears to belong to a class of developmental mutants that are unable to produce cell–cell signals required for M. xanthus development, but they retain the ability to respond to them when they are provided by wild-type cells. Several lines of evidence indicate that asgE cells fail to produce normal levels of A-factor, a cell density signal. A-factor consists of a mixture of heat-stable amino acids and peptides, and at least two heat-labile extracellular proteases. The asgE mutant yielded about 10-fold less heat-labile A-factor and about twofold less heat-stable A-factor than wild-type cells, suggesting that the primary defect of asgE cells is in the production or release of heat-labile A-factor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    The @International Journal Of Applied Radiation And Isotopes 17 (1966), S. 256 
    ISSN: 0020-708X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Familial hypercholanemia (FHC) is characterized by elevated serum bile acid concentrations, itching, and fat malabsorption. We show here that FHC in Amish individuals is associated with mutations in tight junction protein 2 (encoded by TJP2, also known as ZO-2) and bile acid Coenzyme A: amino acid ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Grazing ; Cenchrus ciliaris ; Themeda triandra ; Savanna grasses ; Shoot regrowth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two perennial tussock grasses of savannas were compared in a glasshouse study to determine why they differed in their ability to withstand frequent, heavy grazing; Cenchrus ciliaris is tolerant and Themeda triandra is intolerant of heavy grazing. Frequent defoliation at weekly intervals for six weeks reduced shoot biomass production over a subsequent 42 day regrowth period compared with previously undefoliated plants (infrequent) in T. triandra, but not in C. ciliaris. Leaf area of T. triandra expanded rapidly following defoliation but high initial relative growth rates of shoots were not sustained after 14 days of regrowth because of reducing light utilising efficiency of leaves. Frequently defoliated plants were slower in rate of leaf area expansion and this was associated with reduced photosynthetic capacity of newly formed leaves, lower allocation of photosynthate to leaves but not lower tiller numbers. T. triandra appears well adapted to a regime where defoliation is sufficiently infrequent to allow carbon to be fixed to replace that used in initial leaf area expansion. In contrast, C. ciliaris is better adapted to frequent defoliation than is T. triandra, because horizontally orientated nodal tillers are produced below the defoliation level. This morphological adaptation resulted in a 10-fold higher leaf area remaining after defoliation compared with similarly defoliated T. triandra, which together with the maintenance of moderate levels of light utilising efficiency, contributed to the higher leaf area and shoot weight throughout the regrowth period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Cost of construction ; Life forms ; Nitrogen use efficiency ; Photosynthesis ; Specific leaf area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of biological invasions are most evident in isolated oceanic islands such as the Hawaiian Archipelago, where invasive plant species are rapidly changing the composition and function of plant communities. In this study, we compared the specific leaf area (SLA), leaf tissue construction cost (CC), leaf nutrient concentration, and net CO2 assimilation (A) of 83 populations of 34 native and 30 invasive species spanning elevation and substrate age gradients on Mauna Loa volcano in the island of Hawaii. In this complex environmental matrix, where annual precipitation is higher than 1500 mm, we predicted that invasive species, as a group, will have leaf traits, such as higher SLA and A and lower leaf CC, which may result in more efficient capture of limiting resources (use more resources at a lower carbon cost) than native species. Overall, invasive species had higher SLA and A, and lower CC than native species, consistent with our prediction. SLA and foliar N and P were 22.5%, 30.5%, and 37.5% higher, respectively, in invasive species compared to native ones. Light-saturated photosynthesis was higher for invasive species (9.59 μmol m−2 s−1) than for native species (7.31 μmol m−2 s−1), and the difference was larger when A was expressed on a mass basis. Leaf construction costs, on the other hand, were lower for the invasive species (1.33 equivalents of glucose g−1) than for native species (1.37). This difference was larger when CC was expressed on an area basis. The trends in the above traits were maintained when groups of ecologically equivalent native and invasive species (i.e., sharing similar life history traits and growing in the same habitat) were compared. Foliar N and P were significantly higher in invasive species across all growth forms. Higher N may partially explain the higher A of invasive species. Despite relatively high N, the photosynthetic nitrogen use efficiency of invasive species was 15% higher than that of native species. These results suggest that invasive species may not only use resources more efficiently than native species, but may potentially demonstrate higher growth rates, consistent with their rapid spread in isolated oceanic islands.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 67 (1985), S. 388-393 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Introduced African grasses are invading the grasslands of the Venezuelan savannas and displacing the native grasses. This work, which is part of a program to understand the reasons for the success of the African grasses, specifically investigates whether introduced and native grasses differ in some photosynthetic characteristics. The responses to photon flux density, leaf temperature, leaf-air vapour pressure difference and leaf water potential of leaf photosynthetic rate of two introduced African C4 grasses (Hyparrhenia rufa and Melinis minutiflora) and of a lowland and a highland population of a native Venezuelan grass (Trachypogon plumosus) grown under controlled conditions were compared. These responses in all three species were typical of tropical C4 pasture grasses. The introduced grasses had higher maximum leaf conductance, net photosynthetic rates, and optimum temperature (H. rufa only) for photosynthesis than T. plumosus. However, T. plumosus was able to continue photosynthesis to lower leaf water potentials than the two introduced grasses, and the efficiency which it utilized water, light and mineral nutrients to fix carbon were similar to those of the introduced grasses. The higher rates of leaf photosynthesis of the introduced grasses contributed to, but only partially explained, the higher growth rates compared to T. plumosus. The higher growth rates and nutrient concentration of the introduced grasses are consistent with their ability to establish rapidly, compete successfully for resources, and displace T. plumosus from moist, fertile sites. Conversely, the slower growth rate, lower nutrient concentrations, and superior water relations characteristics are consistent with the capacity of T. plumosus to resist invasion by introduced grasses in poorer sites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...