Skip to main content
Log in

A molecular view of cardiogenesis

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Cardiac development involves a complex integration of subcellular processes into multicellular and, finally, whole organ effects. Until recently it has been difficult to investigate the genetic control of this organ level differentiation of the heart. The proliferation of molecular biology methodologies has provided mechanisms to directly investigate the control of these processes. This article focuses on molecular lines of research on two key areas in cardiac development: the regulation of expression of sarcomeric contractile and regulatory proteins, and atrial natriuretic factor. Molecular approaches are described which have allowed investigators to begin to determine the tissue and stage-specific expression of genes, to locate those genes in the genome, determine their sequences, and to directly investigate the mechanisms controlling their expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bains, W., Ponte, P., Blau, H., and Kedes, L., Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Molec. cell. Biol.4 (1984) 1449–1453.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bartal, A. H., and Hirshaut, Y., eds, Methods of Hybridoma Formation. Humana Press, Clifton, N.J. 1987.

    Google Scholar 

  3. Carey, R. A., Bove, A. A., Coulson, R. L., and Spann, J. F., Correlation between cardiac muscle myosin ATPase activity and velocity of muscle shortening. Biochem. Med.21 (1979) 235–245.

    Article  CAS  PubMed  Google Scholar 

  4. Chizzonite, R. A., and Zak, R., Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J. biol. Chem.259 (1984) 12628–12632.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper, T. A., and Ordahl, C. P., A single troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science226 (1984) 979–982.

    Article  CAS  PubMed  Google Scholar 

  6. Dalla Libera, L., Sartore, S., and Schiaffino, S., Comparative analysis of chicken atrial and ventricular myosins. Biochim. biophys. Acta,581 (1979) 283–294.

    Article  CAS  Google Scholar 

  7. de Groot, I. J. M., Sanders, E., Visser, S. D., Lamers, W. H., de Jong, F., Los, J. A., and Moorman, A. F. M., Isomyosin expression in developing chicken atria: a marker for the development of conductive tissue? Anat. Embryol.176 (1987) 515–523.

    Article  Google Scholar 

  8. de Jong, F., Geerts, W. J. C., Lamers, W. H., Los, J. A., and Moorman, A. F., Isomyosin expression patterns in tubular stages of chicken heart development: a 3-D immunohistochemical analysis. Anat. Embryol.177 (1987) 81–90.

    Article  Google Scholar 

  9. Dechesne, C. A., Leger, J. O. C., and Leger, J. J., Distribution of alpha- and beta-myosin heavy chains in the ventricular fibers of the postnatal developing rat. Devl Biol.123 (1987) 169–178.

    Article  CAS  Google Scholar 

  10. Eisenberg, B. R., Edwards, J. A., and Zak, R., Transmural distribution of isomyosin in rabbit ventricle during maturation examined by immunofluorescence and staining for calcium-activated adenosine triphosphatase. Circ. Res.56 (1985) 548–555.

    Article  CAS  PubMed  Google Scholar 

  11. Emerson, C. P. Jr, and Bernstein, S. I., Molecular genetics of myosin. A. Rev. Biochem.56 (1987) 695–726.

    Article  CAS  Google Scholar 

  12. Evans, D., Miller, J. B., and Stockdale, F. E., Developmental patterns of expression and coexpression of myosin heavy chains in atria and ventricles of the avian heart. Devl Biol.127 (1988) 376–383.

    Article  CAS  Google Scholar 

  13. Gonzalez-Sanchez, A., and Bader, D., Immunochemical analysis of myosin heavy chains in the developing chicken heart. Devl. Biol.103 (1984) 151–158.

    Article  CAS  Google Scholar 

  14. Gonzalez-Sanchez, A., and Bader, D., Characterization of a myosin heavy chain in the conductive system of the adult and developing chicken heart. J. Cell Biol.100 (1985) 270–275.

    Article  CAS  PubMed  Google Scholar 

  15. Graham, R. M., and Zisfein, J. B., Atrial natriuretic factor: biosynthetic regulation and role in circulatory homeostasis, in: The Heart and Cardiovascular System, vol. 1, pp. 1559–1571. Eds H. A. Fozzard, E. Haber, P. B. Jennings, A. M. Katz and H. E. Morgan. Raven Press, New York 1986.

    Google Scholar 

  16. Gustafson, T. A., Bahl, J. J., Markham, B. E., Roeske, W. R., and Morkin, E., Hormonal regulation of myosin heavy chain and alphaactin gene expression in cultured fetal rat heart myocytes. J. biol. Chem.262 (1987) 13316–13322.

    Article  CAS  PubMed  Google Scholar 

  17. Gustafson, T. A., Markham, B. E., Bahl, J. J., and Morkin, E., Thyroid hormone regulates expression of a transfected alpha-myosin heavy-chain fusion gene in fetal heart cells. Proc. natl Acad. Sci. USA84 (1987) 3122–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoh, J. F. Y., McGrath, P. A., and Hale, P. T., Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J. molec. cell. Cardiol.10 (1978) 1053–1076.

    Article  CAS  Google Scholar 

  19. Izumo, S., Nadal-Ginard, B., and Mahdavi, V., All members of the MHC multigene family respond to thyroid hormone in a highly tissuespecific manner. Science231 (1986) 597–600.

    Article  CAS  PubMed  Google Scholar 

  20. Lewin, B., Genes III. J. Wiley and Sons, New York 1987.

    Google Scholar 

  21. Lompre, A. M., Nadal-Ginard, B., and Mahdavi, V., Expression of the cardiac ventricular a and b-myosin heavy chain genes is developmentally and hormonally regulated. J. biol. Chem.259 (1984) 6437–6446.

    Article  CAS  PubMed  Google Scholar 

  22. Lompre, A. M., Mercadier, J. J., Wisnewsky, C., Bouveret, P., Pantaloni, C., d'Albis, A., and Schwartz, K., Species-and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Devl Biol.84 (1981) 286–290.

    Article  CAS  Google Scholar 

  23. Maniatis, T., Fritsch, E. F., and Sambrook, J., eds, Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, New York 1982.

    Google Scholar 

  24. Moench, T. R., In situ hybridization (review). Molec. cell. Probes1 (1987) 195–205.

    CAS  Google Scholar 

  25. Ordahl, C. P., The skeletal and cardiac alpha-actin genes are coexpressed in early embryonic striated muscle. Devl Biol.117 (1986) 488–492.

    Article  CAS  Google Scholar 

  26. Paterson, B. M., and Eldridge, J. D., Alpha-cardiac actin is the major sarcomeric isoform expressed in embryonic avian skeletal muscle. Science224 (1984) 1436–1438.

    Article  CAS  PubMed  Google Scholar 

  27. Pope, B., Hoh, J. F. Y., and Weeds, A., The ATPase activities of rat cardiac myosin isoenzymes. FEBS Lett.118 (1980) 205–208.

    Article  CAS  PubMed  Google Scholar 

  28. Samuel, J.-L., Rappaport, L., Syrovy, I., Wisnewsky, C., Marotte, F., Whalen, R. G., and Schwartz, K., Differential effect of thyroxine on atrial and ventricular isomyosins in rats. Am. J. Physiol. (Heart Circ. Physiol. 19);250 (1986) H333-H341.

    Article  CAS  Google Scholar 

  29. Sanders, E., Moorman, A. F. M., and Los, J. A., The local expression of adult chicken heart myosins during development. I. The three days embryonic chicken heart. Anat. Embryol.169 (1984) 185–191.

    Article  CAS  Google Scholar 

  30. Sanders, E., de Groot, I.J.M., Geerts, W.J.C., de Jong, F., van Horssen, A. A., Los, J. A., and Moorman, A. F. M., The local expression of adult chicken heart myosins during development. II. Ventricular conducting tissue. Anat. Embryol.174 (1986) 187–193.

    Article  CAS  Google Scholar 

  31. Sartore, S., Pierobon-Bormioli, S., and Schiaffino, S., Immunohistochemical evidence for myosin polymorphism in the chicken heart. Nature (Lond.)274 (1978) 82–83.

    Article  CAS  PubMed  Google Scholar 

  32. Scheuer, J., and Bhan, A. K., Cardiac contractile proteins: adenosine triphosphatase activity and physiological function. Circ. Res.45 (1979) 1–12.

    Article  CAS  PubMed  Google Scholar 

  33. Scott, J. N., and Jennes, L., Distribution of atrial natriuretic factor in fetal rat atria and ventricles. Cell Tissue Res.248 (1987) 479–481.

    Article  CAS  PubMed  Google Scholar 

  34. Seidman, C. E., Wong, D. W., Jarcho, J. A., Bloch, K. D., and Seidman, J. G., Cis-acting sequences that modulate atrial natriuretic factor gene expression. Proc. natl. acad. Sci. USA85 (1988) 4104–4108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sweeney, L. J., Zak, R., and Manasek, F. J., Transitions in cardiac isomyosin expression during differentiation of the embryonic chick heart. Circ. Res.61 (1987) 287–295.

    Article  CAS  PubMed  Google Scholar 

  36. Sweeney, L. J., Myosin gene expression in mammalian cardiogenesis. J. cell. Biochem. Suppl.12C (1988) 333.

    Google Scholar 

  37. Swynghedauw, B., Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol. Rev.66 (1986) 710–771.

    Article  CAS  PubMed  Google Scholar 

  38. Thompson, R. P., Simson, J. A. V., and Currie, M. G., Atriopeptin distribution in the developing rat heart. Anat. Embryol.175 (1986) 227–233.

    Article  CAS  Google Scholar 

  39. Toshimori, H., Toshimori, K., Oura, C., and Matsuo, H., Immunohistochemical study of atrial natriuretic polypeptides in the embryonic, fetal and neonatal rat heart. Cell Tissue Res.248 (1987) 627–633.

    Article  CAS  PubMed  Google Scholar 

  40. Walker, J. M., ed. Methods in Molecular Biology, vol. 1. Proteins, vol. 2, Nucleic Acids. Humana Press, Clifton, N.J. 1984.

    Google Scholar 

  41. Wiens, D., and Spooner, B. S., Actin isotype biosynthetic transitions in early cardiac organogenesis. Eur. J. Cell Biol.30 (1983) 60–66.

    CAS  PubMed  Google Scholar 

  42. Wilkinson, J. M., Moir, A. J. G., and Waterfield, M. D., The expression of multiple forms of troponin T in chicken fast skeletal muscle may result from differential splicing of a single gene. Eur. J. Biochem.143 (1984) 47–56.

    Article  CAS  PubMed  Google Scholar 

  43. Zadeh, B. J., Gonzalez-Sanchez, A., Fischman, D. A., and Bader, D. M., Myosin heavy chain expression in embryonic cardiac cell cultures. Devl Biol.115 (1986) 204–214.

    Article  CAS  Google Scholar 

  44. Zeller, R., Bloch, K. D., Williams, B. S., Arceci, R. J., and Seidman, C. E., Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev.1 (1987) 693–698.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y., Shafiq, S. A., and Bader, D., Detection of a ventricularspecific myosin heavy chain in adult and developing chicken heart. J. Cell Biol.102 (1986) 1480–1484.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweeney, L.J. A molecular view of cardiogenesis. Experientia 44, 930–936 (1988). https://doi.org/10.1007/BF01939886

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939886

Key words

Navigation