Skip to main content
Log in

Multivariate analysis of aquatic toxicity data with PLS

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

A common task in data analysis is to model the relationships between two sets of variables, the descriptor matrixX and the response matrixY. A typical example in aquatic science concerns the relationships between the chemical composition of a number of samples (X) and their toxicity to a number of different aquatic species (Y). This modelling is done in order to understand the variation ofY in terms of the variation ofX, but also to lay the ground for predictingY of unknown observations based on their knownX-data. Correlations of this type are usually expressed as regression models, and are rather common in aquatic science. Often, however, the multivariateX andY matrices invalidate the use of multiple linear regression (MLR) and call for methods which are better suited for collinear data. In this context, multivariate projection methods represent a highly useful alternative, in particular, partial least squares projections to latent structures (PLS). This paper introduces PLS, highlights its strengths and presents applications of PLS to modelling aquatic toxicity data. A general discussion of regression, comparing MLR and PLS, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, D.J.W. and R. E. Speece, 1990. Determining chemicals toxicity to aquatic species. Environ. Sci. Technol. 24:284–293.

    Google Scholar 

  • Box, G.E.P., W. G. Hunter and J.S. Hunter, 1978. Statistics for Experimenters, J. Wiley and Sons, N. Y.

    Google Scholar 

  • Deneer, J. W., T. L. Sinnige, W. Seinen and J.L.M. Hermens, 1987. Quantitative structure-activity relatinships for the toxicity and bioconcentration factor of nitrobenzene derivatives towards the guppy (Poecilia reticulata). Aquatic Toxicol. 10:115–129.

    Google Scholar 

  • Deneer, J. W., C.J. van Leeuwen, W. Seinen, J.L. Maas-Diepeveen and J.L.M. Hermens, 1989. QSAR study of the toxicity of nitrobenzene derivatives towardsDaphnia magna, Chlorella pyrenoidosa andPhotobacterium phosphoreum. Aquatic Toxicol. 15:83–98.

    Google Scholar 

  • Draper, N. R. and H. Smith, 1981. Applied regression analysis, J. Wiley and Sons, N.Y.

    Google Scholar 

  • El Tayar, N., R. S. Tsai, P.A. Carrupt and B. Testa, 1992. Octan-1-ol water partition coefficients of zwitterionic amino acids. Determination by centrifugal partition chromatography and factorization into steric/hydrophobic and polar components. J. Chem. Soc. Perkin Trans. 2:79–84.

    Google Scholar 

  • Fisher, R. A., 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7:179–188.

    Google Scholar 

  • Frank, I. E. and J. H. Friedman, 1993. A statistical view of some chemometric regression tools. Technometrics 35:109–148

    Google Scholar 

  • Hermens, J.L.M., 1989. Quantitative structure-activity relationships of environmental pollutants. In: (ed.) O. Hutzinger, The handbook of environmental chemistry, Vol. 2E, Springer Verlag, Berlin, Germany, pp. 111–162.

    Google Scholar 

  • Jackson, J. E., 1991. A users guide to principal components, Wiley-Interscience.

  • Jongman, R.G.H., C.J.F. ter Braak and O.F.R. van Tongeren, 1987. Data analysis in community and landscape ecology, Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Johnsen, S, A. T. Smith, J. Brendenhaug, H. Riksheim and A. L. Gjose, 1994. Identification of sources of acute toxicity in produced water. SPE 27 138, pp. 1–8.

    Google Scholar 

  • Lindgren, F., 1994. Third generation PLS — Some elements and applications. Ph. D. Thesis, Umeå Univesity, Umeå, Sweden.

    Google Scholar 

  • MODDE 2.1 manual 1994, Umetri AB, P.O. Box, 90719 Umeå, Sweden.

  • Mullet, G. M., 1976. Why regression coefficients have the wrong sign. J. Qual. Technol. 8:121–126.

    Google Scholar 

  • Shao, J., 1993. Linear model selection by cross-validation. J. Amer. Stat. Assoc. 88:486–494.

    Google Scholar 

  • Stewart, J.J.P., 1990. MOPAC manual, version 6.0. Frank J. Seiler Research Laboratory, U.S. Air Force Academy, CO.

    Google Scholar 

  • SIMCA P 2.1 manual 1994, Umetri AB, P.O. Box 7960, 90719 Umeå, Sweden.

  • Topliss, J. G. and R. P. Edwards, 1979. Chance factors in studies of quantitative structure-activity relationships. J. Med. Chem. 22:1238–1244.

    Google Scholar 

  • Verhaar, H.J.M., L. Eriksson, M. Sjöström, G. Schüürmann, W. Seinen and J. L. M. Hermens, 1994. Modelling the toxicity of organophosphates: A comparison of the multiple lineare regression and PLS regression methods. Quant. Struct.-Act. Relat. 13:133–143.

    Google Scholar 

  • Wakeling, I.N. and J.J. Morris, 1993. A test of significance for partial least squares (PLS). J. Chemometrics 7:281–304.

    Google Scholar 

  • Weast, R. C., 1987. Handbook of chemistry and physics, 67th ed., CRC Press, Bocan Raton, FL.

    Google Scholar 

  • Wold, S., 1978. Cross-validatory estimation of the number of components in factor and principal component models. Technometrics 20:387–405.

    Google Scholar 

  • Wold, S., C. Albano, W. J. Dunn III, U. Edlund, K. Esbensen, P. Geladi, S. Hellberg, E. Johansson, W. Lindberg and M. Sjöström, 1984. Multivariate data analysis in chemistry. IN: B. R. Kowalski (ed.), Chemometrics — Mathematics and statistics in chemistry, D. Reidel Publishing Company, Dordrecht, Holland, pp. 1–79.

    Google Scholar 

  • Wold, S., 1995. PLS for multivariate linear modelling. In: H. van de Waterbeemd (ed.), QSAR: Chemometric methods in molecular design, Methods and principles in medicinal chemistry, Vol. 2, Verlag Chemie, Weinheim, Germany, pp. 195–218.

    Google Scholar 

  • Wold, S. and L. Eriksson, 1995. Validation Tools. In: H. van de Waterbeemd (ed.), QSAR: Chemometric methods in molecular design, Methods and principles in medicinal chemistry, Vol. 2, Verlag Chemie, Weinheim, Germany, pp. 309–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, L., Hermens, J.L.M., Johansson, E. et al. Multivariate analysis of aquatic toxicity data with PLS. Aquatic Science 57, 217–241 (1995). https://doi.org/10.1007/BF00877428

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877428

Key words

Navigation