Skip to main content
Log in

Dissipative evolution of quantum statistical ensembles and nonlinear response to a time-periodic perturbation

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We present a detailed discussion of the evolution of a statistical ensemble of quantum mechanical systems coupled weakly to a bath. The Hilbert space of the full system is given by the tensor product between the Hilbert spaces associated with the bath and the bathed system. The statistical states of the ensemble are described in terms of density matrices. Supposing the bath to be held at some - not necessarily thermal - statistical equilibrium and tracing over the bath degrees of freedom, we obtain reduced density matrices defining the statistical states of the bathed system. The master equations describing the evolution of these reduced density matrices are derived under the most general conditions. On time scales that are large with respect to the bath correlation time \(\tau_{B}^{\mathrm{corr}}\) and with respect to the reciprocal transition frequencies of the bathed system, the resulting evolution of the reduced density matrix of the bathed system is of Markovian type. The detailed balance relations valid for a thermal equilibrium of the bath are derived and the conditions for the validity of the fluctuation-dissipation theorem are given. Based on the general approach, we investigate the non-linear response of the bathed subsystem to a time-periodic perturbation. Summing the perturbation series we obtain the coherences and the populations for arbitrary strengths of the perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Neumann, Die mathematischen Grundlagen der Quantenmechanik (Springer, Berlin 1932); Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, 1955)

  2. P.A.M. Dirac, Proc. Camb. Phil. Soc. 25, 62 (1929); Proc. Camb. Phil. Soc. 26, 376 (1930); Proc. Camb. Phil. Soc. 27, 240 (1931)

    MATH  Google Scholar 

  3. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  Google Scholar 

  4. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, London, 1955)

  5. R.P. Feynman, F.L. Vernon, Jr., Ann. Phys. (N. Y.) 24, 118 (1963)

    Google Scholar 

  6. L.S. Schulman, Techniques and applications of path integration (Wiley, New York, 1981)

  7. H. Kleinert, Path integrals in quantum mechanics, statistics and polymer physics (World Scientific, Singapore, 1995)

  8. F. Bloch, Phys. Rev. 70, 460 (1946); Phys. Rev. 102, 104 (1956)

    Article  Google Scholar 

  9. R.K. Wangsness, F. Bloch, Phys. Rev. 89, 728 (1953)

    Article  MATH  Google Scholar 

  10. A.G. Redfield, Adv. Magn. Res. 1, 1 (1965); IBM J. Res. Dev. 1, 19 (1957)

    Google Scholar 

  11. W.H. Louisell, Quantum Statistical Properties of Radiation (John Wiley & Sons, New York, 1990)

  12. R.R. Puri, Mathematical Methods of Quantum Optics, Springer Series in Optical Sciences 79 (Springer, Heidelberg 2001)

  13. J.M. Deutsch, I. Oppenheim, Adv. Magn. Res. 3, 43 (1968)

    Google Scholar 

  14. B. Fain, Theory of Rate Processes in Condensed Media (Springer, Heidelberg, 1980)

  15. F.A. Reuse, Introduction á l’Electrodynamique Quantique, to be published in “Presses Polytechniques Romandes”, EPF-Lausanne

  16. A. Stahl, I. Baslev, Electrodynamics of the Semiconductor Band Edge, Springer Tracts in Modern Solids Vol. 110 (Springer, Heidelberg, 1987)

  17. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd edition (World Scientific, Singapore, 1994)

  18. V. Romero-Rochin, A. Orsky, I. Oppenheim, Physica A 156, 244 (1989)

    Article  Google Scholar 

  19. L. Andreozzi, C. Donatti, M. Giordano, D. Leporini, Phys. Rev. A 46, 6222 (1992)

    Article  Google Scholar 

  20. L. Andreozzi, C. Donatti, M. Giordano, D. Leporini, Phys. Rev. E 49, 3488 (1994)

    Article  Google Scholar 

  21. W. Thomas Pollard, R.A. Friesner, J. Chem. Phys. 100, 5054 (1994)

    Article  Google Scholar 

  22. F. Haake, Statistical Treatment of Open Systems by Generalized Master Equations, Springer Tracts in Modern Physics 66 (Springer, Heidelberg, 1973), p. 98

  23. E.B. Davies, Commun. Math. Phys. 39, 91 (1974)

    MATH  Google Scholar 

  24. G. Lindblad, Commun. Math. Phys. 40, 147 (1975); Commun. Math. Phys. 48, 119 (1976)

    MATH  Google Scholar 

  25. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  Google Scholar 

  26. H. Spohn, J.L. Lebowitz, Adv. Chem. Phys. Vol. 38, (Wiley, New York, 1978)

  27. R. Dümcke, H. Spohn, Z. Physik B 34, 419 (1979)

    Google Scholar 

  28. R. Alicki, K. Lendi, Quantum dynamical semigroups and applications, Lecture Notes in Physics 286 (Springer, Heidelberg, 1987)

  29. G.L. Sewell, Quantum Mechanics and Its Emergent Macrophysics (Princeton University Press, Princeton, 2002)

  30. R. Alicki, M. Fannes, Quantum dynamical systems (Oxford University Press, Oxford 2001)

  31. H.-P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002)

  32. This restriction is abolished in: F.A. Reuse, V. de Coulon, K. Maschke, J. Stat. Phys. 114, 361 (2004). In this paper, the authors consider a system of electrons, where the electron spins form the bathed system and where the orbital degrees of freedom are associated with the bath system

    Article  Google Scholar 

  33. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)

    MATH  Google Scholar 

  34. H.B. Callen, R.F. Greene, Phys. Rev. 86, 702 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Kubo, M. Toda, N. Hashitusme, Statistical Physics II, Springer Series on Solid State Physics, Vol. 31, 2nd edn. (Springer, Heidelberg, 1991)

    Google Scholar 

  36. G. Floquet, C.R. Acad. Sci. Paris 91, 880 (1880); Ann. Sci. École Norm. Sup. 12, 47 (1883)

    Google Scholar 

  37. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 4th edn. (Academic Press, San Diego, 1980), pp. 1120-1121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Reuse.

Additional information

Received: 26 November 2003, Published online: 30 January 2004

PACS:

05.30.-d Quantum statistical mechanics - 33.35. + r Electron resonance and relaxation - 33.25. + k Nuclear resonance and relaxation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuse, F.A., Maschke, K., Coulon, V.d. et al. Dissipative evolution of quantum statistical ensembles and nonlinear response to a time-periodic perturbation. Eur. Phys. J. B 36, 573–592 (2003). https://doi.org/10.1140/epjb/e2004-00013-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00013-5

Keywords

Navigation