Skip to main content
Log in

Quantum transport through double-dot Aharonov-Bohm interferometry in Coulomb blockade regime

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Transport through two quantum dots laterally embedded in Aharonov-Bohm interferometry with infinite intradot and arbitrary interdot Coulomb repulsion is analyzed in the weak coupling and Coulomb blockade regime. By employing the modified quantum rate equations and the slave-boson approach, we establish a general dc current formula at temperatures higher than the Kondo temperature for the case that the spin degenerate levels of two dots are close to each other. For further discussion, we examine two simple examples for identical dots - no doubly occupied states and no empty state. In the former, completely destructive coherent transport and phase locking appear at magnetic flux \(\Phi = \Phi_{0}/2\) and \(\Phi = 0\) respectively; in the latter, partially coherent transport exhibits an oscillation with magnetic flux having a period of \(\Phi_0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yacoby, M. Heiblum, D. Mahalu, H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995)

    Article  Google Scholar 

  2. R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, H. Shtrikman, Nature (London) 385, 417 (1997)

    Article  Google Scholar 

  3. Y. Ji, M. Heiblum, D. Sprinzak, D. Mahalu, H. Shtrikman, Science 290, 779 (2000); Y. Ji, M. Heiblum, H. Shtrikman, Phys. Rev. Lett. 88, 076601 (2002)

    Article  Google Scholar 

  4. W.G. van de Wiel, S. De Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, Science 289, 2105 (2000)

    Article  Google Scholar 

  5. K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 88, 256806 (2002)

    Article  Google Scholar 

  6. A.W. Holleitner, C.R. Decker, H. Qin, K. Eberl, R.H. Blick, Phys. Rev. Lett. 87, 256802 (2001)

    Article  Google Scholar 

  7. A.W. Holleitner, R.H. Blick, A.K. Hüttel, K. Eberl, J.P. Kotthaus, Science 297, 70 (2002)

    Article  Google Scholar 

  8. R.H. Blick, A.K. Hüttel, A.W. Holleitner, E.M. Höhberger, H. Qin, J. Kirschbaum, J. Weber, W. Wegscheider, M. Bichler, K. Eberl, J.P. Hotthaus, Physica E 16, 76 (2003)

    Article  Google Scholar 

  9. T.V. Shahbazyan, M.E. Raikh, Phys. Rev. B 49, 17123 (1994)

    Article  Google Scholar 

  10. B. Kubala, J. König, Phys. Rev. B 65, 245301 (2002); B. Kubala, J. König, Phys. Rev. B 67, 205303 (2003)

    Article  Google Scholar 

  11. K. Kang, S.Y. Cho, preprint: cond-mat/0210009

  12. J. König, Y. Gefen, Phys. Rev. Lett. 86, 3855 (2001); J. König, Y. Gefen, Phys. Rev. B 65, 045316 (2002)

    Article  Google Scholar 

  13. Z.T. Jiang, J.Q. You, S.B. Bian, H.Z. Zheng, Phys. Rev. B 66, 205306 (2002)

    Article  Google Scholar 

  14. M.L. Ladrón de Guevara, F. Claro, Pedro A. Orellana, Phys. Rev. B 67, 195335 (2003)

    Article  Google Scholar 

  15. Z.M. Bai, M.F. Yang, Y.C. Chen, preprint: cond-mat/0307071

  16. H. Akera, Phys. Rev. B 47, 6835 (1993)

    Article  Google Scholar 

  17. D. Loss, E.V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000)

    Article  Google Scholar 

  18. D. Boese, W. Hofstetter, H. Schoeller, Phys. Rev. B 64, 125309 (2001)

    Article  Google Scholar 

  19. L.G. Mourokh, N.J.M. Horing, Phys. Rev. B 66, 085332 (2002)

    Article  Google Scholar 

  20. D. Boese, W. Hofstetter, H. Schoeller, Phys. Rev. B 66, 125315 (2002)

    Article  Google Scholar 

  21. Yu. V. Nazarov, Physica B 189, 57 (1993).

    Article  Google Scholar 

  22. A.N. Korotkov, Phys. Rev. B 60, 5737 (1999); A.N. Korotkov, Phys. Rev. B 63, 115403 (2001); A.N. Korotkov, Phys. Rev. B 67, 75303 (2003)

    Article  Google Scholar 

  23. H.S. Goan, G.J. Milburn, H.M. Wisernan, H.B. Sun, Phys. Rev. B 63, 125326 (2001)

    Article  Google Scholar 

  24. B. Elattari, S.A. Gurvitz, Phys. Rev. Lett. 84, 2047 (2000); B. Elattari, S.A. Gurvitz, Phys. Rev. A 62, 32102 (2000)

    Article  Google Scholar 

  25. T.H. Stoof, Yu. V. Nazarov, Phys. Rev. B 55, 1050 (1999); B. L. Hazelzet, M.R. Wegewijs, T.H. Stoof, Yu. V. Nazarov, Phys. Rev. B 63, 165313 (2001)

    Google Scholar 

  26. B. Dong, H.L. Cui, X.L. Lei, preprint: cond-mat/0308387, Phys. Rev. B (in press)

  27. Z. Zou, P.W. Anderson, Phys. Rev. B 37, 627 (1988)

    Article  Google Scholar 

  28. J.H. Davies, S. Hershfield, P. Hyldgaard, J.W. Wilkins, Phys. Rev. B 47, 4603 (1993)

    Article  Google Scholar 

  29. J.C. Le Guillou, E. Ragoucy, Phys. Rev. B 52, 2403 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Lei.

Additional information

Received: 23 July 2003, Published online: 30 January 2004

PACS:

73.21.La Quantum dots - 73.23.-b Electronic transport in mesoscopic systems - 73.23.Hk Coulomb blockade and single-electron tunneling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Dong, B. & Lei, X.L. Quantum transport through double-dot Aharonov-Bohm interferometry in Coulomb blockade regime. Eur. Phys. J. B 36, 599–605 (2003). https://doi.org/10.1140/epjb/e2004-00014-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00014-4

Keywords

Navigation