Skip to main content
Log in

Thermal properties of the valence electrons in alkali metal clusters

  • Original Contributions
  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The finite-temperature density functional approach is applied for the first time to calculate thermal properties of the valence electron system in metal clusters using the spherical jellium model. Both the canonical and the grand canonical formalism are applied and their differences are discussed. We study the temperature dependence of the total free energyF(N) (including a contribution from the ionic jellium background) for spherical neutral clusters containingN atoms. We investigate, in particular, its first and second differences, Δ1 F =F (N − 1) −F (N) and Δ2 F =F(N + 1) +F(N − 1) − 2F(N), and discuss their possible relevance for the understanding of the mass abundance spectra observed in cluster production experiments. We show that the typical enhancement of magic spherical-shell clusters withN=8, 20, 34, 40, 58, 92, 138, 186, 254, 338, 398, 440, 508, 612..., most of which are well established experimentally, is decreasing rather fast with increasing temperatureT and cluster sizeN. We also present electronic entropies and specific heats of spherical neutral clusters. The Koopmans theorem and related approximations for calculating Δ1 F and Δ2 F atT > 0 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knight, W.D., Heer, W.A. de, Clemenger, K.: Solid State Commun.53, 445 (1985); Heer, W.A. de, Knight, W.D., Chou, M.Y., Cohen, M.L.: Solid State Phys.40, 93 (1987)

    Google Scholar 

  2. Ekardt, W.: Phys. Rev. B29, 1558 (1984); Beck, D.E.: Phys. Rev. B30, 6935 (1984)

    Google Scholar 

  3. Kohn, W., Sham, L.J.: Phys. Rev.140, 1133A (1965)

  4. Brack, M., Genzken, O., Hansen, K.: Z. Phys. D — Atoms, Molecules and Clusters19, 51 (1991)

    Google Scholar 

  5. Mermin, N.D.: Phys. Rev.137, 1441A (1965); Gupta, U., Rajagopal, A.K.: Phys. Rep.87, 259 (1982); Evans, R.: Adv. Phys.28, 143 (1979)

  6. Bjørnholm, S., Borggreen, J., Echt,. O., Hansen, K., Pedersen, J., Rasmussen, H.D.: Z. Phys. D — Atoms, Molecules and Clusters19, 47 (1991)

    Google Scholar 

  7. Gunnarsson, O., Lundqvist, B.I.: Phys. Rev. B13, 4274 (1976)

    Google Scholar 

  8. See any textbook on Statistical Mechanics. We liked particularly well the presentation of P. Morse: Thermal Physics, Chs. 16ff. New York: Benjamin 1965

    Google Scholar 

  9. Landau, L.: Sov. Phys. JETP3, 920 (1957)

    Google Scholar 

  10. Strutinsky, V.M.: Nucl. Phys. A122, 1 (1968)

    Google Scholar 

  11. Brack, M., Quentin, P.: Nucl. Phys. A361, 35 (1981)

    Google Scholar 

  12. Mackintosh, A.R., Andersen, O.K.: In: Electrons at the Fermi Surface, Springford, M. (ed.). Cambridge: Cambridge University Press 1980

    Google Scholar 

  13. Brack, M., Quentin, P.: Phys. Lett.52B, 159 (1974); Phys. Scr. A10, 163 (1974)

    Google Scholar 

  14. Bonche, P., Levit, S., Vautherin, D.: Nucl. Phys. A436, 265 (1985)

    Google Scholar 

  15. Perdew, J.P.: In: Density Functional Methods in Physics, p. 309. Dreizler, R.M., Providência, J. da (eds.) New York: Plenum Press 1985

    Google Scholar 

  16. Bassichis, W.H., Strayer, M.R.: Ann. Phys. (N.Y.)66, 457 (1971)

    Google Scholar 

  17. Janak, J.F.: Phys. Rev. B18, 7165 (1978)

    Google Scholar 

  18. Perdew, J.P.: In: Condensed Matter Theories, Vol. 4, p. 149. Keller, J. (ed.). New York: Plenum Press 1989

    Google Scholar 

  19. Seidl, M., Spina, M.E., Brack, M.: Z. Phys. D — Atoms, Molecules and Clusters19, 101 (1991); see also Seidl, M., Meiwes-Broer, K.H., Brack, M.: J. Chem. Phys. 1991 (in press)

    Google Scholar 

  20. Spina, M.E., Seidl, M., Brack, M.: In: Symposium on atomic and surface physics — SASP '90, Märk, T.D., Howorka, F. (eds.), Innsbruck University, Austria, 1990, p. 426; see also: Brack, M.: Phys. Rev.B39, 3533 (1989)

    Google Scholar 

  21. Mahan, G.D., Schaich, W.L.: Phys. Rev. B10, 2647 (1974)

    Google Scholar 

  22. Nishioka, H., Hansen, K., Mottelson, B.R.: Phys. Rev. B42, 9377 (1990)

    Google Scholar 

  23. Engelking, P.C.: J. Chem. Phys.87, 936 (1987)

    Google Scholar 

  24. Bréchignac, C., Cahuzac, Ph., Leygnier, J., Weiner, J.: J. Chem. Phys.90, 1492 (1989)

    Google Scholar 

  25. Bjørnholm, S., Borggreen, J., Echt, O., Hansen, K., Pedersen, J., Rasmussen, H.D.: Phys. Rev. Lett.65, 1627 (1990)

    Google Scholar 

  26. Hansen K., et al.: (in preparation)

  27. Martin, T.P., Bergmann, T., Göhlich, H., Lange, T.: Z. Phys. D — Atoms, Molecules and Clusters19, 25 (1991) and submitted to Chem. Phys. Lett

    Google Scholar 

  28. Ekardt, W., Penzar, Z.: Phys. Rev. B38, 4273 (1988)

    Google Scholar 

  29. Bohr, A., Mottelson, B.: Nuclear Structure II, p. 607ff. New York: Benjamin 1975

    Google Scholar 

  30. Reinhard, P.G., Brack, M., Genzken, O.: Phys. Rev. A41, 5568 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work partially supported by the Danish Natural Science Research Council and by Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brack, M., Genzken, O. & Hansen, K. Thermal properties of the valence electrons in alkali metal clusters. Z Phys D - Atoms, Molecules and Clusters 21, 65–81 (1991). https://doi.org/10.1007/BF01426619

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01426619

PACS

Navigation