Skip to main content
Log in

Production and properties of CO2 cluster anions

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

Stoichiometric and non-stoichiometric negatively charged CO2 cluster ions have been produced in a crossed neutral cluster/electron beam ion source. The abundance and stability of these ions have been studied with a double focussing sector field mass spectrometer. The observed abundance anomalies (“magic numbers”) in the mass spectra of (CO2) n and (CO2) n O ions correlate with corresponding small and large metastable fractions of these ions (for loss of one CO2 unit). Variation of the measured metastable fractions as a function ofn are related to corresponding changes in the monomer binding energies. In addition, we have observed for the first time (CO2) n O 2 ions (i.e. at electron energies above 8 eV with an energy resonance at about 14 eV) and we discuss possible production mechanisms for these ions. Relative electron attachment cross sections have been determined in the energy regime O<E≦20 eV for (CO2) n , (CO2) n O and (CO2) n O 2 withn=1 to 20. The shape of the cross section function for (CO2) n O is strongly dependent on the cluster sizen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knapp, M., Echt, O., Kreisle, D., Märk, T.D., Recknagel, E.: Chem. Phys. Lett.126, 225 (1986)

    Google Scholar 

  2. It is interesting to note in this conjunction that Messmer et al. [3] have recently presented theoretical evidence for “bent bonds” in the CO2 molecule based on ab initio correlated wavefunction results. These results strongly suggest that the carbon-oxygen double bonds in the CO2 molecule are better represented in terms of a pair of bent bonds than by a combination of a σ-bond and a π bond

  3. Messmer, R.P., Schultz, P.A., Tatar, R.C., Freund, H.J.: Chem. Phys. Lett.126, 176 (1986)

    Google Scholar 

  4. Rossi, A., Jordan, K.D.: J. Chem. Phys.70, 4422 (1979)

    Google Scholar 

  5. Boness, M.J., Schulz, G.J.: Phys. Rev. A9, 1969 (1974); Cooper, C.D., Compton, R.N.: J. Chem. Phys.59, 3550 (1973); Compton, R.N., Reinhardt, P.W., Cooper, C.D.: J. Chem. Phys.63, 3821 (1975)

    Google Scholar 

  6. Klots, C.E., Compton, R.N.: J. Chem. Phys.69, 1636 (1978)

    Google Scholar 

  7. Knapp, M., Kreisle, D., Echt, O., Sattler, K., Recknagel, E.: Surf. Sci.156, 313 (1985)

    Google Scholar 

  8. Stamatovic, A., Stephan, K., Märk, T.D.: Int. J. Mass. Spectr.63, 37 (1985)

    Google Scholar 

  9. Stamatovic, A., Leiter, K., Ritter, W., Stephan, K., Märk, T.D.: J. Chem. Phys.83, 2942 (1985)

    Google Scholar 

  10. Kondow, T., Mitsuke, K.: J. Chem. Phys.83, 2612 (1985)

    Google Scholar 

  11. Vostrikov, A.A., Predtechenskii, M.R.: Sov. Phys. Tech. Phys.30, 529 (1985)

    Google Scholar 

  12. Knapp, M., Echt, O., Kreisle, D., Märk, T.D., Recknagel, E.: In: Physics and chemistry of small clusters, pp. 693. Jena, P., Rao, B.K., Khanna, S.N. (eds.), New York: Plenum Press 1987

    Google Scholar 

  13. Tsukuda, M., Shima, N., Tsuneyuki, S., Kageshima, H., Kondow, T.: J. Chem. Phys.87, 3927 (1987)

    Google Scholar 

  14. Quitevic, E.L., Herschbach, D.R.: J. Phys. Chem.93, 1136 (1989)

    Google Scholar 

  15. Kraft, T., Ruf, M.W., Hotop, H.: Z. Phys. D — Atoms, Molecules and Clusters18, 403 (1991)

    Google Scholar 

  16. Märk, T.D.: Int. J. Mass. Spectr. Ion Processes79, 1 (1987)

    Google Scholar 

  17. Märk, T.D., Echt, O.: In: Clusters of atoms and molecules, chapter 5.7, Haberland, H. (ed.). Berlin, Heidelberg, New York: Springer 1992 (in press)

    Google Scholar 

  18. Magnera, T.F., David, D.E., Michl, J.: Chem. Phys. Lett.123, 327 (1986); see also Scheier, P., Märk, T.D.: Chem. Phys. Lett.148, 393 (1988)

    Google Scholar 

  19. Foltin, M., Grill, V., Rauth, T., Märk, T.D.: Int. J. Mass. Spectrom. Ion Processes,110, R7 (1991); Foltin, M., Grill, V., Rauth, T., Herman, Z., Märk, T.D.: Phys. Rev. Lett.68, 2019 (1992)

  20. Walder, G., Margreiter, D., Winkler, C., Stamatovic, A., Herman, Z., Märk, T.D.: J. Chem. Soc. Faraday Trans.86, 2395 (1990)

    Google Scholar 

  21. Hunton, D.E., Albertoni, C.R., Märk, T.D., Castleman, A.W.: Chem. Phys. Lett.106, 544 (1984)

    Google Scholar 

  22. Campagnola, P.J., Posey, L.A., Johnson, M.A.: J. Chem. Phys.95, 7998 (1991)

    Google Scholar 

  23. Märk, T.D.: Int. J. Mass. Spec. Ion Processes107, 143 (1991)

    Google Scholar 

  24. Schulz, G.J.: Phys. Rev.128, 178 (1962)

    Google Scholar 

  25. Chantry, P.J.: J. Chem. Phys.57, 3180 (1972)

    Google Scholar 

  26. Stamatovic, A., Schulz, G.J.: Phys. Rev. A7, 589 (1973)

    Google Scholar 

  27. Orient, O.J., Srivastava, S.K.: In: Proceedings of 13th ICPEAC, Berlin (1983), p. 292

  28. Dressler, R., Allan, M.: Chem. Phys.92, 449 (1985)

    Google Scholar 

  29. Spence, D., Schulz, G.J.: J. Chem. Phys.60, 216 (1974)

    Google Scholar 

  30. Rapp, D., Briglia, D.D.: J. Chem. Phys.43, 1480 (1965)

    Google Scholar 

  31. Klots, C.E., Compton, R.N.: J. Chem. Phys.67, 1779 (1977)

    Google Scholar 

  32. Märk, T.D., Leiter, K., Ritter, W., Stephan, K.: Int. J. Mass. Spec. Ion Proc.74, 281 (1986)

    Google Scholar 

  33. Stephan, K., Helm, H., Märk, T.D.: J. Chem. Phys.73, 3763 (1980)

    Google Scholar 

  34. Poll, H.U., Winkler, C., Margreiter, D., Grill, V., Märk, T.D.: Int. J. Mass. Spectr. Ion Processes

  35. Dahl, D.A.: SIMION Program, Idaho Nat. Eng. Lab., 1987

  36. We are presently constructing a new apparatus which will allow us to study electron attachment to clusters with high energy resolution [37]

  37. Eichberger, P., Lezius, M., Märk, T.D., Winkler, C.: Proceedings of 8th SASP, Pampeago (1992)

  38. Alexander, M.A., Johnson, M.A., Levinger, N.E., Lineberger, W.C.: Phys. Rev. Lett.57, 976 (1986)

    Google Scholar 

  39. Klots, C.E.: J. Phys. Chem.92, 5864 (1988)

    Google Scholar 

  40. Klots, C.E.: Int. J. Mass Spectrom. Ion Processes100, 457 (1990) and references therein

    Google Scholar 

  41. Scheier, P., Märk, T.D.: Int. J. Mass Spectrom. Ion Processes102, 19 (1990); Ji, Y., Foltin, M., Liao, C.H., Märk, T.D.: J. Chem. Phys.

    Google Scholar 

  42. Wei, S., Kilgore, K., Tzeng, W.B., Castleman, A.W. Jr.: J. Phys. Chem.95, 8306 (1991)

    Google Scholar 

  43. Klots, C.E.: Z. Phys. D — Atoms, Molecules and Clusters21, 335 (1991)

    Google Scholar 

  44. Wei, S., Shi, Z., Castleman, A.W. Jr.: J. Chem. Phys.94, 8604 (1991)

    Google Scholar 

  45. Engelking, P.C.: J. Chem. Phys.87, 936 (1987)

    Google Scholar 

  46. Stace, A.J., Shukla, A.K.: Chem. Phys. Lett.85, 157 (1982)

    Google Scholar 

  47. Fleischman, S.H., Jordan, K.D.: J. Phys. Chem.91, 1300 (1986)

    Google Scholar 

  48. De Luca, M.J., Niu, B., Johnson, M.A.: J. Chem. Phys.88, 5857 (1988)

    Google Scholar 

  49. Claydon, C.R., Segal, G.A., Taylor, H.S.: J. Chem. Phys.52, 3387 (1970)

    Google Scholar 

  50. Märk, T.D., Leiter, K., Ritter, W., Stamatovic, A.: Phys. Rev. Lett.55, 2559 (1985)

    Google Scholar 

  51. Christophorou, L.G., McCorkle, D.L., Christodoulides, A.A.: In: Electron molecule interactions, p. 569, Christophorou, L.G., (ed.). Orlando: Academic Press 1984

    Google Scholar 

  52. Paulson, J.F.: J. Chem. Phys.52, 963 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezius, M., Rauth, T., Grill, V. et al. Production and properties of CO2 cluster anions. Z Phys D - Atoms, Molecules and Clusters 24, 289–296 (1992). https://doi.org/10.1007/BF01425751

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01425751

PACS

Navigation