Skip to main content
Log in

A 7.2 GHz bipolar operational transconductance amplifier for fully integrated OTA-C filters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Using a complementary bipolar junction transistor process having NPN transistors with a maximum short circuit common emitter gain-bandwidth product (ft) of 7.2 GHz and PNP transistors with a maximumft of 4.5 GHz, an operational transconductance amplifier has been designed for a 3-dB bandwidth of 7.2 GHz. The design process invokes new phase compensation strategies and develops innovative new ways of exploiting existing broadbanding techniques. The utility of the design is confirmed by demonstrating its application in two operational transconductance amplifier-capacitance filters. One of these examples is a 225 MHz lowpass filter, while the other is a bandpass filter with a center frequency of 250 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grebene, A. B.,Bipolar and MOS Analog Integrated Circuit Design, chap. 8, New York: Wiley-Interscience, 1984.

    Google Scholar 

  2. Solomon, J. E. and Wilson, G. R., “A highly desensitized wideband monolithic amplifier,”IEEE J. Solid-State Circuits, Vol. SC-1, pp. 19–28, Sept. 1966.

    Google Scholar 

  3. Gilbert, B., “A new wideband amplifier technique,”IEEE J. Solid-State Circuits, Vol. SC-3, pp. 353–365, Dec. 1968.

    Google Scholar 

  4. Mataya, J. A., Haines, G. W. and Marshall, S. B., “IF amplifier using Cc-compensated transistors,”IEEE J. Solid-State Circuits, Vol. SC-3, pp. 401–407, Dec. 1968.

    Google Scholar 

  5. Camenzind, H. R. and Grebene, A. B., “An outline of design techniques for linear integrated circuits,”IEEE J. Solid-State Circuits, Vol. SC-4, pp. 110–122, June 1969.

    Google Scholar 

  6. Wooley, B. A., “Automated design of DC-coupled monolithic broad-band amplifiers,”IEEE J. Solid-State Circuits, Vol. SC-6, pp. 24–34, Feb. 1971.

    Google Scholar 

  7. Couglin, J. B., Gelsing, R. J., Jochems, P. J. and van der Laak, H. J. M., “A monolithic silicon wideband amplifier from DC to 1 GHz,”IEEE J. Solid-State Circuits, Vol. SC-8, pp. 414–419, Dec. 1973.

    Google Scholar 

  8. Meyer, R. G., Eschenbach, R. and Chin, R., “A wideband ultralinear amplifier from DC to 300 MHz,”IEEE J. Solid-State Circuits, Vol. SC-9, pp. 167–175, Aug. 1974.

    Google Scholar 

  9. Allen, P. and Terry, M. B., “Use of current amplifiers for high performance voltage applications,”IEEE J. Solid-State Circuits, Vol. SC-15, pp. 155–162, 1980.

    Google Scholar 

  10. Meyer, R. G. and Blauschild, R., “A four terminal wideband monolithic amplifier,”IEEE J. Solid-State Circuits, Vol. SC-17, pp. 634–638, Dec. 1981.

    Google Scholar 

  11. Choma, J., Jr., “Gain and bandwidth characteristics of a variable gain, actively neutralized, differential pair,”IEEE Trans. Circuits and Systems, Vol. CAS-33, pp. 66–71, Jan. 1986.

    Google Scholar 

  12. Choma, J., Jr., “Simplified design guidelines for dominant pole amplifiers peaked actively by emitter or source followers,”IEEE Trans. Circuits and Systems, Vol. 36, pp. 1005–1010, July 1989.

    Google Scholar 

  13. Armijo, C. T. and Meyer, R. G., “A new wide-band Darlington amplifier,”IEEE J. Solid-State Circuits, Vol. SC-24, pp. 1105–1109, Aug. 1989.

    Google Scholar 

  14. Beall, W. G. and Choma, J., Jr., “Charge-neutralized differential pair,”J. of Analog Integrated Circuits and Systems, Vol. 1, pp. 33–44, Sept. 1991.

    Google Scholar 

  15. Degrauwe, M. G. R., “CMOS voltage references using lateral bipolar transistors,”IEEE J. Solid State Circuits, Vol. SC-20, pp. 1151–1157, December 1985.

    Google Scholar 

  16. Wyszynski, A., Schaumann, R., Szczepanski, S. and Halen, P. V., “Design of a 2.7 GHz linear OTA in bipolar transistor array technology with lateral PNPs,”Proc. IEEE International Symp. on Circuits and Systems, pp. 2844–2847, 1992.

  17. Gray, P. R. and Meyer, R. G.,Analysis and Design of Analog Integrated Circuits. New York: John Wiley & Sons, chap. 6, 1977.

    Google Scholar 

  18. Franco, S.,Design with Operational Amplifiers and Analog ICs. New York: McGraw-Hill, 1988.

    Google Scholar 

  19. Franco, S.,Current Feedback Amplifiers Benefit High Speed Designs. EDN, 1989.

  20. Koullias, I. A., “A wideband low-offset current-feedback op amp design,”Proc. Bipolar Circuits and Tech. Mtg., pp. 120–123, 1989.

  21. Lidgey, F. J. and Toumazou, C., “Current-mode analogue signal processing,”Proc. Bipolar Circuits and Tech. Mtg., pp. 224–232, 1991.

  22. Jost, S. R., “An 850 MHz current feedback operational amplifier,”Proc. Bipolar Circuits and Tech. Mtg., pp. 71–74, 1992.

  23. Toumazou, C. and Lidgey, F. J., “Extending voltage-mode amplifiers to current-mode performance,”IEE Proc. G. Electron. Circuits and Systems, Vol. 137, pp. 116–130.

  24. Atarodi, M. and Choma, J., Jr., “High frequency fully integrated OTA-C filters using a 7.2 GHz bipolar OTA,”Proc. IEEE 36th Midwest Symp. on Circuits and Systems, 1993.

  25. Witherspoon, S. and Choma, J., Jr., “The analysis of balanced linear differential circuits,”IEEE Trans. on Education (to be published in Dec. 1995).

  26. Moree, J. P., Groenwold, G. and van den Broeke, L. A. D., “A bipolar integrated continuous-time filter with optimized dynamic range,”IEEE J. of Solid-State Circuits, pp. 954–961, Sept. 1993.

  27. Moinian, S. and Choma, J., Jr., “The frequency response of bipolar transistor noise figure,”IEEE Trans. on Circuits and Systems, Vol. CAS-33, pp. 72–76, Jan. 1986.

    Google Scholar 

  28. Choma, J., Jr. and Witherspoon, S. A., “Computationally efficient estimation of frequency response and driving point impedance in wideband analog amplifiers,”IEEE Trans. on Circuits and Systems, Vol. CAS-37, pp. 720–728, June 1990.

    Google Scholar 

  29. Geiger, R. L. and Sanchez-Sinencio, E., “Active filter design using operational transconductance amplifiers: a tutorial,”IEEE Circuits and Devices Magazine, pp. 20–32, 1985.

  30. Atarodi, M.,Analysis and Design of Operational Transconductance Amplifiers for Ota-C Filter Applications, Ph. D. Dissertation, University of Southern California, Los Angeles, California, Aug. 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atarodi, M., Choma, J. A 7.2 GHz bipolar operational transconductance amplifier for fully integrated OTA-C filters. Analog Integr Circ Sig Process 6, 243–253 (1994). https://doi.org/10.1007/BF01238892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238892

Keywords

Navigation