Skip to main content
Log in

Microstructure Evolution of Nonhydrolytic Alumina Gels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nonhydrolitic sol-gel processes of aluminum chloride and aluminum bromide with isopropyl ether and aluminum sec-butoxide were performed at various temperatures. Based on the Arrhenius type variation of the gelation time with temperature, activation energies for the gelation were found to be in the range 19–25 Kcal/mol range. The energies were found to be sensitive to the nature of the aluminum ligands and the chemical scheme. Due to the large activation energy, it is possible to stop the reaction at any time before gelation by cooling the sol to room temperature. Small angle X-ray scattering (SAXS) of sols from the AlClAlCl3/Pr\(_2^i \)O system shows unique development of a fractal like structure with nanometer scale order, demonstrated by discrete peaks in the SAXS data. A fractal dimension D = 1.64 was found. An aggregation scheme is proposed to explain this phenomenon. A fractal dimension of 2.4 without small scale ordering found for xerogels prepared from the AlCl3/ASB system reflects the effect of the different precursors on the microstructure of nonhydrolytic gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  2. Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics, and Specialty Shapes, edited by L.C. Klein (Noyes, Park Ridge, New Jersey, 1988).

    Google Scholar 

  3. B.E. Yoldas, Amer. Ceram. Soc. Bull. 54, 286 (1975); J. Mat. Sci. 10, 1856 (1975).

    Google Scholar 

  4. Y. Mizushima and M. Hori, J. Non-Cryst. Solids 167, 1 (1994).

    Google Scholar 

  5. S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).

    Google Scholar 

  6. P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 339 (1994).

    Google Scholar 

  7. S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mat. Res. Soc. Symp. Proc. 346, 345 (1994).

    Google Scholar 

  8. S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 170, 234 (1994).

    Google Scholar 

  9. L.F. Nazar, D.G. Napier, D. Lapham, and E. Epperson, in Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc. 180, 117 (1990).

    Google Scholar 

  10. S. Keysar, Y. De Hazan, Y. Cohen, T. Aboud, and G.S. Grader, J. Mat. Res., (in press).

  11. W.V. Rausch and H.D. Bale, J. Chem. Phys. 40, 3391 (1964).

    Google Scholar 

  12. D.W. Schaefer, R.A. Shwllman, K.D. Keefer, and J.E. Martin, Physica. 140A, 105 (1986).

    Google Scholar 

  13. M.W. Colby, A. Osaka, and J.D. Mackenzie, J. Non-Cryst. Solids 99, 129 (1988).

    Google Scholar 

  14. J. Sanchez, M. Reese, and A. Mccormick, in Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc. 180, 263 (1990).

    Google Scholar 

  15. S. Acosta, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Sol-Gel. Sci. Tech. 2, 25 (1994).

    Google Scholar 

  16. D.W. Schaefer, K.D. Keefer, J.H. Aubert, and P.B. Rand, in Science of Chemical Processing, edited by L.L. Hench and D.R. Ulrich (Wiley, New York, 1986), p. 140.

    Google Scholar 

  17. D.W. Schaefer, MRS Bulletin 4, 49 (1994).

    Google Scholar 

  18. J.C. Pouxviel, J.P. Boilot, A. Lecomete, and A. Dauger, J. Phisique. 48, 921 (1987).

    Google Scholar 

  19. D.W. Schaefer, in Revue de Physique Appliquee, Colloque C4, edited by R. Vacher, J. Phallippou, J. Pelous, and T. Woignier (1989), p. 121.

  20. P. Meakin, Ann. Res. Phys. Chem. 39, 237 (1988).

    Google Scholar 

  21. J.E. Martin and A.J. Hurd, J. Appl. Cryst. 20, 61 (1987).

    Google Scholar 

  22. Yachin Cohen and Edwin L. Thomas, Macromolecules 21, 436 (1988).

    Google Scholar 

  23. J.E. Martin and J. Wilcoxon, in Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc. 180, 199 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grader, G., de Hazan, Y., Cohen, Y. et al. Microstructure Evolution of Nonhydrolytic Alumina Gels. Journal of Sol-Gel Science and Technology 10, 5–12 (1997). https://doi.org/10.1023/A:1018306019878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018306019878

Navigation