Skip to main content
Log in

Analysis of Antimony Doping in Tin Oxide Thin Films Obtained by the Sol-Gel Method

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The antimony doping in SnO2 thin films prepared by the sol-gel dip-coating method has been studied using two characterization techniques. In order to determine the actual doping level directly in the deposited layers, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) have been used. We found that this doping level is systematically lower than expected from the starting solutions composition, and that two oxidation states are present: Sb3+ and Sb5+. As the antimony content increases, there is a competition between Sb5+ and Sb3+ species.

The SnO2: Sb thin films have also been observed by transmission electron microscopy (TEM), showing that the measured mean size of crystallites decreases as the Sb content increases in the oxide. No precipitates of either Sn or Sb oxides (other than SnO2) could be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Lampert, Solar Energy Materials 6, 1 (1981).

    Google Scholar 

  2. C.M. Lampert, Solar & Wind Technology 4(3), 347 (1987).

    Google Scholar 

  3. J.R. Bellingham, W.A. Phillips, and C.J. Adkins, Journal of Materials Science Letters 11, 263 (1992).

    Google Scholar 

  4. A. Nakajima, Journal of Materials Science Letters 12, 1778 (1993).

    Google Scholar 

  5. S.S. Park, H. Zheng, and J.D. Mackenzie, Materials Letters 17, 346 (1993).

    Google Scholar 

  6. K.H. Song and S.J. Park, Journal of Materials Science: Materials in Electronics 4, 249 (1993).

    Google Scholar 

  7. M. Ippomatsu, H. Sasaki, and H. Yanagida, Journal of Materials Science 25, 259 (1990).

    Google Scholar 

  8. B. Stjerna and C.Q. Granqvist, SPIE 1727, 178 (1992).

    Google Scholar 

  9. B. Stjerna, E. Olsson, and C.G. Granqvist, Journal Applied Physics 76(6), 3797 (1994).

    Google Scholar 

  10. B. Orel, U. Lavrencic-Stangar, and K. Kalcher, J. Electrochem. Soc. 141(9), L127 (1994).

    Google Scholar 

  11. B. Orel, U. Laurencic-Stangar, Z. Crnjak-Orel, P. Bukovec, and M. Kosec, Journal of Non-Crystalline Solids 167, 272 (1994).

    Google Scholar 

  12. J. Bruneaux, H. Cachet, M. Froment, and A. Messad, Electrochimica Acta 39(8/9), 1251 (1994).

    Google Scholar 

  13. A.B. Swartzlander, D.W. Niles, F.S. Hasoon, and M.M. Al-Jassim, Surface and Interface Analysis 21, 160 (1994).

    Google Scholar 

  14. J.P. Chatelon, C. Terrier, E. Bernstein, R. Berjoan, and J.A. Roger, Thin Solid Films 247, 162 (1994).

    Google Scholar 

  15. C. Terrier, J.P. Chatelon, R. Berjoan, and J.A. Roger, Thin Solid Films 263, 37 (1995).

    Google Scholar 

  16. M. Boudeulle, P. Bussiere, P. Vergnon, N. Zenaidi, Y. Fukuda, A. Fujisawa, and G. Shimaoka, Appl. Surf. Sci. 48/49, 200 (1990).

    Google Scholar 

  17. L.L. Hench and D.R. Ulrich, in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Wiley (1984), p. 15.

  18. K.S. Mazdiyasni, Ceram. Int. 8(2), 42 (1982).

    Google Scholar 

  19. L. Hubert-Pfalzgraf, GRECO (1990).

  20. R.C. Mehrotra, Journal of Non-Crystalline Solids 121, 1 (1990).

    Google Scholar 

  21. A. Boelle, J.A. Roger, B. Canut, J. Mugnier, and M. Pitaval, Apll. Surf. Sci. 46, 200 (1990).

    Google Scholar 

  22. M. Kojima, H. Kato, and M. Gatto, Philosophical Magazine B 68(2), 215 (1993).

    Google Scholar 

  23. Y. Nakanishi, Y. Suzuki, T. Nakamura, Y. Hatanaka, Y. Fukuda, A. Fujisowa, and G. Shimaoka, Applied Surface Science 48/49, 55 (1991).

    Google Scholar 

  24. I.S. Mulla, H.S. Soni, V.J. Rao, and A.P.B. Sinha, Journal of Matrials Science 21, 1280 (1986).

    Google Scholar 

  25. J. Kane and H.P. Schweizer, J. Electrochem. Soc. 123(2), 270 (1976).

    Google Scholar 

  26. D.R. Pike, R. Reid, and R.J.D. Tilley, J. Chem. Soc. Faraday I 76, 1174 (1980).

    Google Scholar 

  27. J.E. Whitney and N. Davidson, J. Am. Chem. Soc. 71, 3809 (1949).

    Google Scholar 

  28. E. Shanti, V. Dutta, A. Banerjee, and K.L. Chopra, Journal Applied Physics 51(12), 6243 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrier, C., Chatelon, J., Roger, J. et al. Analysis of Antimony Doping in Tin Oxide Thin Films Obtained by the Sol-Gel Method. Journal of Sol-Gel Science and Technology 10, 75–81 (1997). https://doi.org/10.1023/A:1018388306674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018388306674

Navigation