Skip to main content
Log in

Synthesis and characterization of processable polyborate precursors

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Polyborates have been formed by disproportionation and polycondensation of trimethoxyboroxine and also of trimethoxyboroxine and boric acid. The crtiical role of stoichiometry in the formation of polyborates without requiring incorporation of a metal counter ion is revealed. The emphasis is on integration of this chemistry with fabrication processes. Incorporation of an appropriate linear organic polymer is shown to yield the required rheological and thermal characteristics in this regard. These polyborates are inferred to be suitable as precursors for boron nitride in geometrical forms that can be processed as supported structures. However, they are also determined to be unsuitable as precursors for boron nitride fibers, oriented or isotropic, primarily due to their low glass transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Steinberg, Organoboron Chemistry, Vol. 1 (John Wiley & Sons, New York, NY, 1964).

    Google Scholar 

  2. G.L. O'Connor and H.R. Nace, J. Am. Chem. Soc. 77, 1578 (1955).

    Article  Google Scholar 

  3. N. Venkatasubramanian, B. Wade, P. Desai, A.S. Abhiraman, and L.T. Gelbaum, Polym. Mat. Sci. Eng. (ACS Proceedings), 62, 614 (1990).

    CAS  Google Scholar 

  4. N. Venkatasubramanian, B. Wade, P. Desai, A.S. Abhiraman, and L.T. Gelbaum, J. Non-Cryst. Solids 130, 144 (1991).

    Article  CAS  Google Scholar 

  5. J.O. Edwards and V. Ross, J. Inorg. Nucl. Chem. 15, 329 (1960).

    Article  CAS  Google Scholar 

  6. B. Wade, N. Venkatasubramanian, P. Desai, A.S. Abhiraman, L.T. Gelbaum, and E.C. Ashby, Polym. Mat. Sci. Eng. (ACS Proceedings) 64, 377 (1991).

    CAS  Google Scholar 

  7. B. Wade, D. Mohr, N. Venkatasubramanian, P. Desai, and A.S. Abhiraman, Polym. Preprints (ACS Proceedings) 32, 554 (Fall 1991).

    CAS  Google Scholar 

  8. G. Winter, W. Verbeek, and M. Mansmann, U.S. Patent 3,892,583 (1975).

    Google Scholar 

  9. S. Horikiri, K. Tsuji, Y. Abe, A. Fukui, and E. Ichiki, Japan Patent 49108325 (1974).

  10. S. Horikiri, K. Tsuji, Y. Abe, A. Fukui, and E. Ichiki, Japan Patent 5012335 (1975).

  11. B.E. Wade, Boron Nitride Fibers From Polymer Precursors, Ph.D. Thesis, Georgia Institute of Technology, (1992).

  12. D.W. Aubrey, M.F. Lappert, and H. Pyozora, J. Chem. Soc., Part II, 1931 (1961).

  13. C. Pistorius, J. Chem. Phys. 31, 1454 (1959).

    Article  CAS  Google Scholar 

  14. K. Niedenzu, W. Sawodny, H. Watanabe, J.W. Dawson, T. Totani, and W. Weber, Inorg. Chem. 6, 1453 (1967).

    Article  CAS  Google Scholar 

  15. E.G. Brame, Jr., J.L. Morgrave, and V.W. Meloche, J. Inorg. Nucl. Chem. 5, 48 (1957).

    Article  CAS  Google Scholar 

  16. A. Shelnutt, B. Morosin, D. Emin, A. Mullendore, and G. Slack, in Boron-Rich Solids, edited by R.G. Lerner (American Institute of Physics, New York, NY, 1986), p. 312.

    Google Scholar 

  17. W.J. Lehmann and I. Shapiro, Spectrochimica Acta 17, 396 (1961).

    Article  CAS  Google Scholar 

  18. G.S. Parks and M.E. Spaght, Phys. 6, 69 (1935).

    Article  CAS  Google Scholar 

  19. A. Napolitano, P.B. Macedo, and E.G. Hawkins, J. Am. Ceram. Soc. 48, 613 (1965).

    Article  CAS  Google Scholar 

  20. J. Boow, Phys. Chem. Glasses 8, 45 (1967).

    CAS  Google Scholar 

  21. A.E. Lindemanis, in Emergent Process Methods For High-Technology Ceramics, edited by R.F. Davis, H. Palmour, and R.L. Porter (Plenum Press New York, NY, 1984), p. 111.

    Google Scholar 

  22. M.W. Chase, Jr., C.A. Daview, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables (American Chemical Society and American Institute of Physics, third edition, 1986), p. 14.

  23. J. Economy, R.V. Anderson, and V.I. Matkovich, App. Polym. Sym. 9, 377 (1969).

    Google Scholar 

  24. J. Thomas, Jr., N.E. Weston, and T.E. O'Connor, J. Am. Chem. Soc. 84, 4619 (1963).

    Article  Google Scholar 

  25. L.A. Wall, Soc. Plastic Eng. J. 16, 810 (1960).

    CAS  Google Scholar 

  26. J. Krogh-Moe, J. Non-Cryst. Solids 1, 269 (1969).

    Article  CAS  Google Scholar 

  27. J. Economy and R.V. Anderson, Text. Res. J. 36, 994 (1966)

    Article  CAS  Google Scholar 

  28. J. Economy and R.V. Anderson, J. Polym. Sci. 19, 283 (1967).

    Google Scholar 

  29. R.Y. Lin, J. Economy, H.H. Murty, and R. Ohnsorg, App. Polym. Sym. 29, 175 (1976).

    CAS  Google Scholar 

  30. J. Economy and R. Anderson, Inorg. Chem. 5, 989 (1966).

    Article  CAS  Google Scholar 

  31. C.J. Brinker, K.J. Ward, K.D. Keefer, E. Holupka, and P.J. Bray, in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, Pittsburgh, PA, 1986), p. 57.

    Google Scholar 

  32. C.J. Brinker, K.J. Ward, K.D. Keefer, E. Holupka, P.J. Bray, and P.K. Pearson, in Aerogels, edited by J. Fricke (Springer, Berlin, 1986), p. 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, B., Venkatasubramanian, N., Desai, P. et al. Synthesis and characterization of processable polyborate precursors. J Sol-Gel Sci Technol 5, 15–25 (1995). https://doi.org/10.1007/BF00486707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486707

Keywords

Navigation