Skip to main content
Log in

Sol-gel-derived micron scale optical fibers for chemical sensing

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report for the first time on the preparation of organically-doped room temperature processed sol-gel-derived micron scale optical fibers as platforms for chemical- and bio-sensors. Micron scale optical fibers are drawn from fluorescent dye-doped tetraethoxysilane (TEOS)-derived sol-gel solution processed under ambient conditions. Such a simple methodology to entrap organic and even bioactive species within the optical fiber offers many advantages over more conventional ways of immobilizing organic probes for the development of optical sensors. Specifically, we report on the photophysical properties of fluorescein (a pH sensitive fluorescent dye) and rhodamine 6G (R6G; laser dye) entrapped within sol-gel-derived optical fibers. We present the preliminary results on the viability of such doped optical fibers for chemical sensing. Our results demonstrate that a fluorescein-doped sol-gel-derived optical fiber responds to ammonia and acid vapors with a response time of 1–2 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors, Vols. I & II (CRC Press, Boca Raton, 1991).

    Google Scholar 

  2. J.R. Lackowicz, Topics in Fluorescence Spectroscopy; Volume 4: Probe Design and Chemical Sensing (Plenum, New York, 1994), Ch. 7.

    Google Scholar 

  3. R.F. Taylor, Protein Immobilization: Fundamentals and Applications (Marcell Dekker, New York, 1991), Ch. 8.

    Google Scholar 

  4. Chromatography; Part A: Fundamentals & Techniques, edited by E. Heftman (Elsevier, New York, 1992), Ch. 7.

    Google Scholar 

  5. O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov, and J. Gun, Anal. Chem. 67, 22A (1995).

    Google Scholar 

  6. B.C. Dave, B. Dunn, J.S. Valentine, and J.I. Zink, Anal. Chem. 66, 1120A (1994).

    Google Scholar 

  7. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi, Chem. Mater. 6, 1605, (1994).

    Google Scholar 

  8. N. Aharonson, M. Altstein, G. Avidan, D. Avnir, A. Bronshtein, A. Lewis, K. Leiberman, M. Ottolenghi, Y. Polevaya, C. Rottman, J. Samuel, S. Shalom, A. Strinkovski, and A. Turniansky in Better Ceramics Through Chemistry, VI, edited by M.L. Mecartney, C.J. Brinker, and A. Cheetham, Mater. Res. Soc. Symp. Proc. 346, (1994).

  9. U. Narang, R.A. Dunbar, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 1700 (1993).

    Google Scholar 

  10. V. Chernyak, R. Reisfeld, R. Gvishi, and D. Venezky, Sens. Mater. 2, 117 (1990).

    Google Scholar 

  11. R. Reisfeld, R. Gvishi, and Z. Burshtein, J. Sol-Gel Sci. Tech. 4, 49 (1995).

    Google Scholar 

  12. J.I. Zink, J.S. Valentine, and B. Dunn, New J. Chem. 18, 1109 (1994).

    Google Scholar 

  13. U. Narang, P.N. Prasad, F.V. Bright, K. Ramanathan, N.D. Kumar, B.D. Malhotra, M.N. Kamalasanan, and S. Chandra, Anal. Chem. 66, 3139 (1994).

    Google Scholar 

  14. B.D. MacCraith, C. mcDonagh, G. O'Keeffe, A.K. McEvoy, T. Butler, and F.R. Sheridan, Proc. SPIE: Sol-Gel Optics III 2288, 518 (1994).

    Google Scholar 

  15. B.D. MacCraith, V. Ruddy, C. Potter, B. O'Kelly, and J.F. McGilp, Elect. Lett. 27, 1247 (1994).

    Google Scholar 

  16. J. Samuel, A. Strinkovski, S. Shalom, K. Lieberman, M. Ottolenghi, D. Avnir, and A. Lewis, Mater. Lett. 21, 431 (1994).

    Google Scholar 

  17. S. Sakka in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by L.C. Klein (Noyes, New Jersy, 1988), Ch. 7.

    Google Scholar 

  18. W.C. LaCourse in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by L.C. Klein (Noyes, New Jersy, 1988), Ch. 9.

    Google Scholar 

  19. W.C. Lacourse, S. Dabar, and M. Akiitar, Commun. Amer. Ceram. Soc. 67, C-200 (1984).

    Google Scholar 

  20. A.B. Wojcik, L.C. Klein, and S. Muto, Proc. SPIE: Sol-Gel Optics III 2288, 392 (1994).

    Google Scholar 

  21. E.A. Mendoza, D.J. Ferrell, and R.A. Lieberman, Proc. SPIE: Sol-Gel Optics III 2288, 621 (1994).

    Google Scholar 

  22. U. Narang, J.D. Jordan, F.V. Bright, and P.N. Prasad, J. Phys. Chem. 98, 8101 (1994).

    Google Scholar 

  23. A. Galtarossa, E. Nava, and G. Valentini in Single-Mode Optical Fiber Measurement: Characterization and Sensing, edited by G. Cancellieri (Artech House, Boston, 1993), Ch. 3.

    Google Scholar 

  24. P.A. Tick and D.L. Weidman, Proc. SPIE: Nonlin. Opt. Prop. Org. Mater. V 1775, 391 (1992).

    Google Scholar 

  25. D. Avnir, V.R. Kaufman, and R. Reisfeld, J. Non-Cryst. Solids 74, 395 (1995).

    Google Scholar 

  26. U. Narang, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 229 (1993).

    Google Scholar 

  27. R. Reisfeld, M. Eyal, and R. Gvishi, Chem. Phys. Lett. 138, 377 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narang, U., Gvishi, R., Bright, F.V. et al. Sol-gel-derived micron scale optical fibers for chemical sensing. Journal of Sol-Gel Science and Technology 6, 113–119 (1996). https://doi.org/10.1007/BF00402594

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402594

Keywords

Navigation