Skip to main content
Log in

Freeze-fracture characterization of cell types at the surface of the taste organ of the frog,Rana esculenta

  • Published:
Journal of Neurocytology

Summary

The ultrastructure and distribution of intramembrane particles in the chemoreceptor surface of the frog taste organ have been studied by means of freeze-fracture. Sustentacular, wing, mucous cells and two different types of putative taste cells were found to reach the free surface of this chemoreceptor. Each of these cell types was characterized by a different pattern and density of intramembrane particles in the free surface. Wing cells displayed a relatively low number of large intramembrane particles (11.1 ± 1.4 nm in diameter). Particles of similar size were also present in a much higher concentration in the membrane of cylinder-ending putative taste cells. In microvilli-ending putative taste cells, mucous cells, and sustentacular cells, small intramembrane particles were observed (6.8 ± 0.78, 6.9 ± 1.3, 7.2 ± 0.7 nm in diameter, respectively). The density of these particles was higher in the sustentacular cells than in the other two cell types. These data provide evidence that there are two morphologically distinct types of putative taste cells in the frog taste organ, demonstrating that they are characterized by different pattern of intramembrane particles in their free surface. Furthermore, the present results support previous findings indicating that wing and sustentacular elements represent two different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, N., Noma, A. &Sato, M. (1976) Electrical responses of frog taste cells to chemical stimuli.Journal of Physiology 254, 87–107.

    PubMed  Google Scholar 

  • Akisaka, T. &Oda, M. (1978) Taste buds in the vallate papillae of the rat studied with freeze-fracture preparations.Archivum Histologicum Japonicum 41, 87–98.

    PubMed  Google Scholar 

  • Avenet, P. &Lindemann, B. (1987) Patch-clamp study of isolated taste receptor cells of the frog.Journal of Membrane Biology 97, 223–40.

    PubMed  Google Scholar 

  • Düring-Von, M. &Andres, K. H. (1976) The ultrastructure of taste and touch receptors of the frog's taste organ.Cell and Tissue Research 165, 185–98.

    PubMed  Google Scholar 

  • Gioglio, L., Rapuzzi, G. &Dell'Orbo, C. (1988) Fine structure of the fungiform papilla in a ranid frog (Rana esculenta).Journal of Morphology 195, 1–16.

    PubMed  Google Scholar 

  • Graziadei, P. &Dehan, R. (1971) The ultrastructure of frogs' taste organs.Acta Anatomica 80, 563–603.

    PubMed  Google Scholar 

  • Hirata, K. &Nada, O. (1975) A monoamine in the gustatory cells of the frog's taste organ. A fluorescence histochemical and electron microscopic study.Cell and Tissue Research 159, 101–8.

    PubMed  Google Scholar 

  • Jahnke, K. &Baur, P. (1979) Freeze-fracture study of taste bud pores in the foliate papillae of the rabbit.Cell and Tissue Research 200, 245–56.

    PubMed  Google Scholar 

  • Kerjaschki, D. &Horandner, H. (1976) The development of mouse olfactory vesicles and their cell contacts: a freeze-etching study.Journal of Ultrastructure Research 54, 420–44.

    PubMed  Google Scholar 

  • Kinnamon, S. (1988) Taste transduction: a diversity of mechanisms.Trends in Neurosciences 11, 491–6.

    PubMed  Google Scholar 

  • Lancet, D., Lazard, D., Heldman, J., Khen, M. &Nef, P. (1988) Molecular transduction in smell and taste.Cold Spring Harbor Symposia on Quantitative Biology 53, 343–8.

    PubMed  Google Scholar 

  • Menco, B. P. H. M. (1980) Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory epithelial surfaces of frog, ox, rat, and dog. II. Cell apices, cilia, and microvilli.Cell and Tissue Research 211, 5–29.

    PubMed  Google Scholar 

  • Menco, B. P. H. M. (1988) Pre-natal development of rat nasal epithelia. V. Freeze-fracturing on necklaces of primary and secondary cilia of olfactory and respiratory epithelial cells.Anatomy and Embryology 178, 381–8.

    PubMed  Google Scholar 

  • Menco, B. P. H. M., Dodd, G. H., Davey, M. &Bannister, L. H. (1976) Presence of membrane particles in freeze-etched bovine olfactory cilia.Nature 263, 597–9.

    PubMed  Google Scholar 

  • Miragall, F. (1983) Evidence for orthogonal arrays of particles in plasma membranes of olfactory and vomero-nasal sensory neurons of vertebrates.Journal of Neurocytology 12, 567–76.

    PubMed  Google Scholar 

  • Miyamoto, T., Okada, Y. &Sato, T. (1988) Membrane properties of isolated frog taste cells: three types of responsivity to electrical stimulation.Brain Research 449, 369–72.

    PubMed  Google Scholar 

  • Osculati, F., Sbarbati, A., Franceschini, F., Cecchini, T., Ciaroni, S., Ferrara, P. &Zancanaro, C. (1985) Proposta di un nuovo modello interpretativo della organizzazione cellulare del recettore gustativo della lingua di rana.Studi Urbinati 27, 99–126.

    Google Scholar 

  • Raviola, E. &Osculati, F. (1967) La fine struttura dei recettori gustativi della lingua di rana.Rendiconti dell' Istituto Lombardo di Scienze e Lettere 101, 599–627.

    Google Scholar 

  • Richter, H. P., Avenet, P., Mestres, P. &Lindemann, B. (1988) Gustatory receptors and neighbouring cells in the surface layer of an amphibian taste organ: in situ relationships and response to cell isolation.Cell and Tissue Research 254, 83–96.

    Google Scholar 

  • Röhlich, P. &Pevzner, R. A. (1982) The chemoreceptor surface of the taste organ in the frogRana esculenta.Cell and Tissue Research 224, 409–20.

    PubMed  Google Scholar 

  • Roper, S. D. (1989a) The cell biology of vertebrate taste receptors.Annual Reviews of Neuroscience 12, 329–53.

    Google Scholar 

  • Roper, S. D. (1989b) Ion channels and taste transduction. InChemical Senses (edited byBrand, J. G., Teeter, J. H., Cagan, R. H. &Kare, M. R.) pp. 137–49. New York and Basel: Marcel Dekker.

    Google Scholar 

  • Sato, O. &Sato, R. (1990) Electrical responses of supporting cells in the frog taste organ to chemical stimuli.Comparative Biochemistry and Physiology 95A, 115–20.

    Google Scholar 

  • Sato, T., Ohkusa, M., Okada, Y. &Sasaki, M. (1983) Topographical difference in taste organ density and its sensitivity of frog tongue.Comparative Biochemistry and Physiology 76A, 233–9.

    Google Scholar 

  • Sbarbati, A., Zancanaro, C., Franceschini, F., Balercia, G., Morroni, M. &Osculati, F. (1990) Characterization of different microenvironments at the surface of the frog's taste organ.American Journal of Anatomy 188, 199–211.

    PubMed  Google Scholar 

  • Sbarbati, A., Ceresi, E. &Accordini, C. (1991) Surfactant-like material on the chemoreceptorial surface of the frog's taste organ: an ultrastructural and electron spectroscopic imaging study.Journal of Structural Biology 107, 128–35.

    PubMed  Google Scholar 

  • Stensaas, L. J. (1971) The fine structure of fungiform papillae and epithelium of the tongue of a South America toad,Calyptocephalella gayi.American Journal of Anatomy 131, 443–62.

    PubMed  Google Scholar 

  • Teeter, J. H. &Brand, J. G. (1987) Peripheral mechanisms of gustation physiology and biochemistry. InNeurophysiology of Taste and Smell (edited byFinger, T. E. &Silver, W. L.) pp. 299–329. New York: John Wiley and Sons.

    Google Scholar 

  • Toyoshima, K., Honda, E., Nakahara, S. &Shimamura, A. (1984) Ultrastructural and histochemical changes in the frog taste organ following denervation.Archivum Histologicum Japonicum 47, 31–42.

    PubMed  Google Scholar 

  • Uga, S. &Hama, K. (1967) Electron microscopic studies on the synaptic region of the taste organ of carp and frogs.Journal of Electron Microscopy 16, 269–76.

    PubMed  Google Scholar 

  • Zancanaro, C., Sbarbati, A., Franceschini, F., Balercia, G. &Osculati, F. (1990) The chemoreceptor surface of the taste organ in the frog,Rana esculenta. An ultrastructural study with lanthanum nitrate.Histochemical Journal 22, 480–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sbarbati, A., Zancanaro, C., Ferrara, P. et al. Freeze-fracture characterization of cell types at the surface of the taste organ of the frog,Rana esculenta . J Neurocytol 22, 118–128 (1993). https://doi.org/10.1007/BF01181575

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181575

Keywords

Navigation