Skip to main content
Log in

Features of kinetic processes in the active medium of a pulsed chemical oxygen-iodine laser

  • Published:
Journal of Soviet Laser Research Aims and scope

Conclusion

It can be concluded from our experiments and calculations that the product CF3O2 of the interaction between the CF3 radical and the O2 molecule quenches the oxygen O2(1Δ) more strongly. At low chlorine admixture density in the singlet-oxygen stream this output energy of the oxygen-iodine laser with CF3I as the atomic iodine donor is lower compared with CH3I. The rate constant of quenching singlet oxygen by CF3O2 molecules is (3–5)·10−11 cm3·sec−1. It would be possible to decrease the influence of CF3O2 by adding to the initial O2 *−O2−CF3I−Ar active mixture some other substance causing the CF3 radicals to enter in a chemical reaction with a shorter characteristic time than that for CF3O2 formation. Of course, neither the initial substance nor the reaction products should quench O2 * noticeably. This role can be possibly assumed by the NO molecule.

The influence of the chlorine additive on the output energy of a laser with CH3I and CF3I differs greatly. The choice of the chlorine donor must therefore be determined by the amount of this additive. CH3I is preferable if the chlorine is fully utilized in the singlet-oxygen laser, and CF3I in the opposite case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. N. G. Basov, P. G. Kryukov, and N. N. Yuryshev, Kvantovaya Elektron. (Moscow),14, 924 (1987).

    Google Scholar 

  2. N. G. Basov, N. P. Vagin, P. G. Kryukov, D. Kh. Nurligareev, V. S. Pazyuk, and N. N. Yuryshev, ibid.,11, 1893 (1984).

    Google Scholar 

  3. R. Zhang, F. Chen, X. Song, Q. Zhuang, and G. Zhang, CLEO-87, W138, Baltimore, April 27–May 1, (1987) p. 160.

  4. N. F. Balan, Kratk. Soobshch. Fiz. FIAN, No. 4, 40 (1988).

    Google Scholar 

  5. A. F. Konoshenko, P. G. Kryukov, D. Kh. Nurligareev, V. S. Pasyuk, V. N. Tomashov, N. N. Yuryshev, and N. P. Vagin, Proc. 1st Int. Workshop on “Iodine Laser and Applications,” Sept. 15–19, (1986), Bechyne, Czechoslovakia, p. 253.

  6. N. P. Vagin, P. G. Kryukov, V. S. Pazyuk, and N. N. Yuryshev, Kvantovaya Elektron. (Moscow),15, 1785 (1988).

    Google Scholar 

  7. J. P. Sing, J. Bachar, D. W. Setser, and S. Rosenwaks, J. Phys. Chem.,89, 5347 (1985).

    Google Scholar 

  8. A. T. Young and P. L. Houston, J. Chem. Phys.,78, 2317 (1983).

    Google Scholar 

  9. N. P. Vagin, D. G. Karapetyan, A. F. Konoshenko, P. G. Kryukov, V. S. Pazyuk, V. N. Tomashov, and N. N. Yuryshev, Trudy FIAN,194, 114 (1989).

    Google Scholar 

  10. M. V. Zagidullin, A. P. Zaikin, V. I. Igoshin, and N. L. Kupriyanov, FIAN Preprint No. 151, Moscow (1986).

  11. Zhuang Qi, Wang Chendong, and Zhang Cunhao, Chinese Physics-Lasers,14, 413 (1987).

    Google Scholar 

  12. A. M. Velichko, E. B. Gordon, A. A. Nadeikin, A. I. Nikitin, and V. L. Tal'roze, Khim. Vys. Energ.,19, 72 (1985).

    Google Scholar 

  13. F. Caralp, R. Lesclaux, and A. M. Dognon, Chem. Phys. Lett.,129, 433 (1986).

    Google Scholar 

  14. V. I. Igoshin, et al., Kvantovaya Elektron. (Moscow),7, 722 (1977).

    Google Scholar 

  15. C. C. Davis, et al., IEEE J. Quant. Electron.QE-12, 334 (1976).

    Google Scholar 

  16. S. V. Kuznetsova and A. I. Maslov, Kvantovaya Elektron.,16, 980 (1989).

    Google Scholar 

  17. A. T. Young and P. L. Houston, J. Chem. Phys.,78, 2317 (1983).

    Google Scholar 

  18. Z.-N Gu, A. T. Young, and P. L. Houston, Int. J. Chem. Kin.,16, 669 (1984).

    Google Scholar 

  19. A. J. Grimley and P. L. Houston, J. Chem. Phys.69, 2339 (1978).

    Google Scholar 

  20. R. J. Donovan and D. Husain, Chem. Soc. London Annual Rep.A.68, 148 (1971).

    Google Scholar 

  21. T. L. Andreeva, S. V. Kuznetsova, et al., Pis'ma Zh. Éksp. Teor. Fiz.,13, 631 (1971).

    Google Scholar 

  22. R. G. Derwent and B. A. Thrush, Trans. Faraday Soc.,67, 2036 (1971).

    Google Scholar 

  23. K. H. Becker, W. Groth, and U. Shurath, Chem. Phys. Lett.,8, 259 (1971).

    Google Scholar 

  24. J. P. Singh and D. W. Setser, J. Phys. Chem.,89, 5353 (1985).

    Google Scholar 

  25. I. R. Stagle, D. Gutman, J. W. Devies, and M. J. Pilling, J. Phys. Chem.,92, 2455 (1988).

    Google Scholar 

  26. M. Keiffer, M. J. Pilling, and M. J. C. Smith, ibid.,91, 6028 (1987).

    Google Scholar 

  27. H. Okabe, Photochemistry of Small Molecules [Russian Translation], Mir, Moscow (1981).

    Google Scholar 

  28. N. P. Vagin, V. A. Zolotarev, P. G. Kryukov, V. S. Pazyuk, Yu. P. Podmar'kov, M. P. Frolov, and N. N. Yuryshev, Kvantovaya Élektron. (Moscow),18, 33 (1991).

    Google Scholar 

Download references

Authors

Additional information

Quantum Radiophysics Division, Lebdev Physics Institute. Translation of Preprint No. 21 of the Lebedev Physics Institute, Moscow, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vagin, N.P., Zolotarev, V.A., Kryukov, P.G. et al. Features of kinetic processes in the active medium of a pulsed chemical oxygen-iodine laser. J Russ Laser Res 13, 60–71 (1992). https://doi.org/10.1007/BF01140310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01140310

Keywords

Navigation