Skip to main content
Log in

Long-pulse (0.5 μsec) electric-discharge XeCl laser continuously tunable in the 307.00–308.93 nm range

  • Published:
Journal of Soviet Laser Research Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. V. Mel'chenko, A. N. Panchenko, and V. F. Tarasenko, “Electric discharge XeCl laser with emission pulse duration 1 μsec,” Kvantovaya Élektron. (Moscow),11, 1490–1492 (1984).

    Google Scholar 

  2. R. S. Taylor and K. E. Leopold, “Microsecond duration optical pulses from a UV-preionized XeCl laser,” Appl. Phys. Lett.,47, 81–83 (1985).

    Google Scholar 

  3. R. S. Taylor and K. E. Leopold, “Ultralong optical-pulse corona preionized XeCl laser,” J. Appl. Phys.,65, 22–29 (1989).

    Google Scholar 

  4. J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas-discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,”ibid.,67, 3517 (1990).

    Google Scholar 

  5. A. J. W. Brown, E. G. Sergoyan, P. E. White, M. von Dadelszen, and C. H. Fisher, “A 20-J flow-compatible XeCl laser,” IEEE Photon Technol. Lett.,3, No. 5, 433 (1991).

    Google Scholar 

  6. T. M. Shay, R. C. Sze, M. Maloney, and J. F. Figueira, “120-psec duration pulses by active mode locking of an XeCl laser,” J. Appl. Phys.,64, 3758 (1988).

    Google Scholar 

  7. A. Z. Grasyuk, S. V. Efimovskii, A. K. Zhigalkin, Yu. I. Karev, and S. V. Kurbasov, “Long-pulse XeCl laser in an active mode-locking regime,” Kvantovaya Élektron. (Moscow),17, 35 (1990).

    Google Scholar 

  8. T. J. McKee, “Long-pulse excimer integrated master oscillator-power amplifier optical system,” Opt. Lett.,15, 795 (1990).

    Google Scholar 

  9. S. Watanabe, A. J. Alcock, K. E. Leopold, and R. S. Taylor, “Spatially resolved gain measurements in UV preionized homogenous discharge XeCl and KrF lasers,” Appl. Phys. Lett.,38, 3 (1981).

    Google Scholar 

  10. T. Hasama, K. Miyazaki, K. Yamada, K. Ohuchi, and T. Sato, “High-power XeCl discharge laser with a large active volumes,” J. Appl. Phys.,61, 4691 (1987).

    Google Scholar 

  11. D. E. Rothe, C. Wallace, and T. Petach, “Efficiency optimization for discharge excited high-energy excimer laser,” in: proc. Conf. Excimer Lasers, NY, AIP, Vol. 100, 33–34 (1983).

  12. Yu. I. Bychkov, S. V. Mel'schenko, G. A. Mesyats, A. I. Suslov, V. P. Tarasenko, A. I. Fedorov, and A. G. Yastremskii, “Quasistationary excitation of electric-discharge exciplex lasers,” Kvantovaya Élektron. (Moscow),9, 2423 (1982).

    Google Scholar 

  13. W. H. Long, M. J. Plummer, and E. A. Stappaerts, “Efficient discharge pumping of an XeCl laser using a high-voltage prepulse,” Appl. Phys. Lett.,43, 735 (1983).

    Google Scholar 

  14. R. S. Taylor, “Preionization and discharge stability study of long optical pulse duration UV-preionized XeCl lasers,” Appl. Phys.,B41, No. 1, 1–24 (1986).

    Google Scholar 

  15. C. H. Fisher, M. J. Kushner, T. E. DeHart, J. P. McDaniel, R. A. Pert, and J. J. Ewing, “High-efficiency XeCl laser with spiker and magnetic isolation,” Appl. Phys. Lett.,48, 1574 (1986).

    Google Scholar 

  16. M. Yu. Artem'ev, A. Z. Grasyuk, and V. M. Nesterov, “Electric-discharge XeCl laser with lasing pulse 500 nsec long,” Kvantovaya Élektron. (Moscow),16, 2374 (1989).

    Google Scholar 

  17. S. V. Efimovskii, A. K. Zhigalkin, Yu. I. Karev, and S. V. Kurbasov, “Lasing and gain characteristics of an excimer XeCl laser with pulse duration 0.5 μsec,”ibid.18, 1407 (1991).

    Google Scholar 

  18. J.-M. Hueber, B. L. Fontaine, Ph. C. Delaporte, B. M. Forrestier, and M. L. Sentis, “Small-volume long-pulse x-ray preionized XeCl laser with double discharge and fast ferrite magnetic switch,” Opt. Commun.,85, No. 2, 3; 237 (1991).

    Google Scholar 

  19. N. V. Zernov and V. G. Karpov, Theory of Radio-Engineering Circuits [in Russian], Énergiya, Leningrad (1972), p. 286.

    Google Scholar 

  20. T. J. Chang, “Improved uniform-field electrode profiles for TEA laser and high-voltage application,” Rev. Sci. Instrum.,44, 404 (1973).

    Google Scholar 

  21. S. V. Efimovskii, A. K. Zhigalkin, Yu. I. Karev, and S. V. Kurbasov, “Excimer XeCl laser with lasing pulse 0.5 μsec long,” FIAN Preprint No. 79, 1–40, Moscow (1991).

  22. M. C. Cates, “A long pulse (5 μsec) narrowband (≤300 MHz) e-beam pumped XeCl master oscillator-power amplifier laser,” Proc. SPIE,1023, 80 (1989).

    Google Scholar 

  23. T. J. McKee, “Optical cavity design for long pulse excimer lasers,” Appl. Opt.,30, 635–644 (1991).

    Google Scholar 

  24. I. V. Chaltakov, N. I. Minkovski, and I. V. Tomov, “A widely tunable XeCl excimer laser,” Opt. Commun.,65, 437 (1988).

    Google Scholar 

  25. A. Sur, A. K. Hui, and J. Tellinghuisen, “Noble gas halides. The B-X and D-X systems of136Xe35Cl,” J. Mol. Spectr.,74, 465 (1979).

    Google Scholar 

  26. T. J. Pacala, I. S. McDermid, and J. B. Landenslager, “A wavelength scannable XeCl oscillator-ring amplifier system,” Appl. Phys. Lett.,40, 1 (1982).

    Google Scholar 

Download references

Authors

Additional information

Translated from a preprint (manuscript) of the Lebedev Physics Institute, Russian Academy of Sciences, Moscow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efimovskii, S.V., Zhigalkin, A.K., Karev, Y.I. et al. Long-pulse (0.5 μsec) electric-discharge XeCl laser continuously tunable in the 307.00–308.93 nm range. J Russ Laser Res 14, 360–376 (1993). https://doi.org/10.1007/BF01125725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01125725

Keywords

Navigation