Skip to main content
Log in

Size distribution of dissolved (<200 nm) organic carbon and aluminium in alkaline and humic lakes

  • Published:
Hydrobiological Bulletin Aims and scope Submit manuscript

Abstract

Chemical equilibrium calculations treating humic substances as the simple diprotic phtalic acid, predicted no Al-humus at pH>6.5 in humic lake water. However, dissolved (<200 nm) organic carbon (DOC) and dissolved Al appeared to be linearly (r=0.597, P<0.001) correlated in samples from five different humic surface waters in The Netherlands with a DOC range of 10–36 mg.l−1 and a (mean) pH range of 6.85–8.47. Yet, organic carbon (Corg) and Al did no exhibit similar size distributions between 5 and 200 nm revealed by ultrafiltration. Averaged 25% of the Corg and >50% of the Al occurred in the fraction <5 nm. Only in this fraction the Corg and Al were linearly correlated (r=0.515, P<0.001). This result suggests the presence of organic ligands in the DOC pool of humic waters having smaller molecular sizes and higher Al stability constants than the humic substances used to model aquatic Al speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BACKES, C. A. and E. TIPPING, 1987. An evaluation of the use of cation-exchange resin for the determination of organically-complexed Al in natural acid waters. Int. J. envir. analyt. Chem., 30: 135–143.

    Google Scholar 

  • DE HAAN, H., 1983. Use of ultraviolet spectroscopy, gel filtration, pyrolysis/mass spectrometry and numbers of benzoate-metabolizing bacteria in the study of humification and degradation of aquatic organic matter. In: R. F. Christman and E. T. Gjessing (eds.). Aquatic and Terrestrial Humic Materials. Ann Arbor Science, Ann Arbor, pp. 165–182.

    Google Scholar 

  • DE HAAN, H. and T. DE BOER, 1979. Seasonal variations of fulvic acids, amino acids and sugars in Tjeukemeer. The Netherlands. Arch. Hydrobiol., 85: 30–40.

    Google Scholar 

  • DE HAAN, H., T. DE BOER, J. VOERMANN, H. A. KRAMER and J. R. MOED, 1984. Size classes of ‘dissolved’ nutrients in shallow, alkaline, humic and eutrophic Tjeukemeer, The Netherlands, as fractionated by ultrafiltration. Verh. Internat. Verein. Limnol., 22: 876–881.

    Google Scholar 

  • DE HAAN, H. and T. DE BOER 1986. Geochemical aspects of aqueous iron, phosphorus and dissolved organic carbon in the humic Lake Tjeukemeer, The Netherlands. Freshwat. Biol., 16: 661–672.

    Google Scholar 

  • DE HAAN, H. and J. VOERMAN, 1988. The chemistry of a typical Dutch reservoir, the Tjeukemeer in, relation to its water management between 1970 and 1986. Freshwat. Biol., 20: 1–10.

    Google Scholar 

  • DE HAAN, H., H. L. HOOGVELD, T. DE BOER, J. VOERMAN, J. R. MOED, H. A. KRAMER and J. SCHROTENBOER, 1988. Manipulation of chemistry and phytoplankton by hydrological intervention: a whole lake experiment in the northern Netherlands. Freshwat. Biol., 20: 395–406.

    Google Scholar 

  • DE HAAN, H., J. VOERMAN, T. DE BOER, J. R. MOED, J. SCHROTENBOER, and H. L. HOOGVELD, 1990. Trace metal chemistry of a Dutch reservoir, the Tjeukemeer. Freshwat. Biol., 24: 391–400.

    Google Scholar 

  • DRISCOLL, C. T., 1984. A procedure for the fractionation of aqueous aluminium in dilute acidic waters. Int. J. envir. analyt. Chem., 16: 267–283.

    Google Scholar 

  • HODGES, S. C., 1987. Aluminium speciation: A comparison of five methods. Soil Sci. Soc. Amer. J., 51: 57–64.

    Google Scholar 

  • KAL, B. F. M., G. B. ENGELEN and Th. E. CAPPENBERG, 1984. Loosdrecht lakes restoration project: Hydrology and physico-chemical characteristics of the lakes. Verh. Internat. Verein. Limnol., 22: 835–841.

    Google Scholar 

  • LEWIS, T. E., D. E. DOBB, J. M. HENSHAW and S. J. SIMON, 1988. Apparent monomeric aluminium concentrations in the presence of humic and fulvic acid and other ligands: An intermethod comparison study. Int. J. envir. anal. Chem., 34: 69–87.

    Google Scholar 

  • NORDSTROM, D. K. and J. W. BALL, 1986. The geochemical behavior of aluminium in acidified surface waters. Science 232: 54–56.

    Google Scholar 

  • SCHNITZER, M., and S. K. KHAN, 1972. Humic substances in the environment. Dekker, Inc, New York, 327 p.

    Google Scholar 

  • STUMM, W., and J. J. MORGAN, 1981. Aquatic chemistry. An introduction emphasizing chemical equilibria natural waters. 2nd Edition. Wiley & Son, New York, 780 p.

    Google Scholar 

  • TIPPING, E. and C. A. BACKES, 1988. Organic complexation of Al in acid waters: Model-testing by titration of a streamwater sample. Wat. Res., 22: 593–595.

    Article  Google Scholar 

  • TIPPING, E., C. WOOF, C. A. BACKES and M. OHNSTAD, 1988. Aluminium speciation in acidic natural waters: Testing of a model for Al-humic complexation. Wat. Res., 22: 321–326.

    Article  Google Scholar 

  • TIPPING, E., C. A. BACKES and M. A. HURLEY, 1988a. The complexation of protons, aluminium and calcium by aquatic humic substances; A model incorporating binding-site heterogeneity and macroionic effects. Wat. Res., 22: 597–611.

    Article  Google Scholar 

  • VERWEIJ, W., 1990. Manual for the GEoCHemical EQuilibrium model GECHEQ. Limnological Institute. Internal Report 1990-9.

  • VERWEIJ, W., H. DE HAAN, T. DE BOER and J. VOERMAN, 1989. Copper complexation in eutrophic and humic Lake Tjeukemeer, The Netherlands. Freshwat. Biol., 21: 427–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Haan, H., De Boer, T. & Voerman, J. Size distribution of dissolved (<200 nm) organic carbon and aluminium in alkaline and humic lakes. Hydrobiological Bulletin 24, 145–151 (1991). https://doi.org/10.1007/BF02260432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02260432

KeyWords

Navigation