Skip to main content
Log in

Substrate binding by crude membranes and solubilized membrane extracts fromPseudomonas natriegens

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A component formed in the membranes ofPseudomonas natriegens during induction to utilization of mannitol orl-arabinose was found to bind the specific inducing substrate. Chloramphenicol inhibited the synthesis of the component. Binding was optimal at 25–30 C in the presence of Na+ and K+. Trypsin, KCN, and N-ethylmaleimide destroyed or suppressed the capacity to bind, but DNase and RNase had little effect. Specific binding was demonstrated by equilibrium dialysis with labeled substrate on one side of the dialysis cell and membranes or alkaline extracts of membranes on the other. Membranes from mannitol-grown cells broke the equilibrium established for C14-labeled mannitol, whereas membranes from cells grown in sea water nutrient broth did not. The substrate was unchanged after binding. Simple alkaline extraction followed by centrifugation at 105,000 ×g for 60 min gave significant purification of the binding component. Specific requirement of Na+ and K+ for substrate binding by alkaline extracts of membranes could not be demonstrated. The binding capacity of the solubilized component in alkaline extracts was destroyed by heating, but was stable to storage at 0 C for several days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anraku, Y. 1967. The reduction and restoration of galactose transport in osmotically shocked cells ofEscherichia coli. J. Biol. Chem.242: 793–800.

    PubMed  CAS  Google Scholar 

  • Block, R. J., Durrum, E. L. andZweig, G. 1958. Manual of paper chromatography and paper electrophoresis. 2nd Ed. Academic Press, New York.

    Google Scholar 

  • Bohinski, H. andStein, W. D. 1966. Isolation of a glucose-binding component from human erythrocyte membranes. Nature211: 1366–1368.

    Article  Google Scholar 

  • Bolton, A. A. andEddy, A. A. 1962. The properties of certain particles isolated from yeast protoplasts distrupted by osmotic shock. Biochem. J.82: 16p-17p.

    CAS  Google Scholar 

  • Bonsall, R. W. andHunt, S. 1966. Solubilization of a glucose-binding component of the red cell membrane. Nature211: 1368–1370.

    Article  PubMed  CAS  Google Scholar 

  • Drapeau, G. R. andMacLeod, R. A. 1963. Na+ dependent active transport of α-aminoisobutyric acid into cells of a marine pseudomonad. Biochem. Biophys. Res. Commun.12: 111–115.

    Article  Google Scholar 

  • Dreyfuss, J. 1964. Characterization of a sulfate- and thiosulfate-transporting system inSalmonella typhimurlum. J. Biol. Chem.239: 2292–2297.

    PubMed  CAS  Google Scholar 

  • Fox, C. F., Carter, J. R. andKenedy, E. P. 1967. Genetic control of the membrane component of the lactose transport system ofE. coli. Proc. Natl. Acad. Sci. U.S.57: 698–705.

    Article  CAS  Google Scholar 

  • Gilby, A. R., Few, A. V. andMcQuillen, K. 1958. The chemical composition of the protoplast membrane ofMicrococcus lysodeikticus. Biochim. Biophys. Acta29: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R. andStadtman, E. R. 1966. Proline uptake by an isolated cytoplasmic membrane preparation ofEscherichia coli. Proc. Natl. Acad. Sci. U.S.55: 920–927.

    Article  CAS  Google Scholar 

  • Kolber, A. R. andStein, W. D. 1966. Identification of a component of a transport ‘carrier’ system: Isolation of the permease expression of thelac operon ofEscherichia coli. Nature209: 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Kundig, W., Kundig, F. D., Anderson, B. andRoseman, S. 1966. Restoration of active transport of glycosides inEscherichia coli by a component of the phosphotransferase system. J. Biol. Chem.241: 3243–3246.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193: 265–275.

    PubMed  CAS  Google Scholar 

  • Pardee, A. B. andPrestidge, L. S. 1966. Cell-free activity of a sulfate binding site involved in active transport. Proc. Natl. Acad. Sci. U.S.55: 189–191.

    Article  CAS  Google Scholar 

  • Pardee, A. B., Prestidge, L. S., Whipple, M. B. andDreyfuss, J. 1966. A binding site for sulfate and its relation to sulfate transport intoSalmonella typhimurium. J. Biol. Chem.241: 3962–3969.

    PubMed  CAS  Google Scholar 

  • Payne, W. J. 1958. Studies on bacterial utilization of uronic acids. III. Induction of oxidative enzymes in a marine isolate. J. Bacteriol.76: 301–307.

    PubMed  CAS  Google Scholar 

  • Payne, W. J. 1966.In C. Oppenheimer, [ed.], Unresolved problems in marine microbiology, IVth Conference on Marine Biology, N. Y. Acad. Sci.In press.

  • Phodes, M. E. andPayne, W. J. 1962. Further observations of effects of cations on enzyme induction in marine bacteria. Antonie van Leeuwenhock28: 302–314.

    Article  Google Scholar 

  • Rhodes, M. E. andPayne, W. J. 1967a. Influence of Na+ on synthesis of a substrate entry mechanism in a marine bacterium. Proc. Soc. Exptl. Biol. Med.124: 953–955.

    Article  CAS  Google Scholar 

  • Rhodes, M. E. andPayne, W. J. 1967b. Influence of cations on spheroplasts of marine bacteria functioning as osmometers. Appl. Microbiol.15: 537–542.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., Levinthal, M., Kundig, F. D., Kundig, W., Anderson, B., Hartman, P. E. andRoseman, S. 1967. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Proc. Natl. Acad. Sci. U.S.58: 1963–1970.

    Article  CAS  Google Scholar 

  • Tomlinson, G. A. andCampbell, J. J. R. 1965. Cytological distribution of the products of oxidative assimilation inPseudomonas aeruginosa. J. Bacteriol.90: 599–603.

    PubMed  CAS  Google Scholar 

  • Warburg, O. andChristian, W. 1942. Isolierung und Krystallisation des Gärungsferments Enolase. Biochem. Z.310: 384–421.

    CAS  Google Scholar 

  • Weibull, C. andBerostrom, L. 1958. The chemical nature of the cytoplasmic membrane and cell wall ofBacillus megaterium, strain M. Biochim. Biophys. Acta30: 340–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, M.E., Payne, W.J. Substrate binding by crude membranes and solubilized membrane extracts fromPseudomonas natriegens . Antonie van Leeuwenhoek 34, 298–312 (1968). https://doi.org/10.1007/BF02046451

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02046451

Keywords

Navigation