Skip to main content
Log in

Barriers to application of genetically modified lactic acid bacteria

  • Applications
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

To increase the acceptability of food products containing genetically modified microorganisms it is necessary to provide in an early stage to the consumers that the product is safe and that the product provide a clear benefit to the consumer. To comply with the first requirement a systematic approach to analyze the probability that genetically modified lactic acid bacteria will transform other inhabitants of the gastro-intestinal (G/I) tract or that these lactic acid bacteria will pick up genetic information of these inhabitants has been proposed and worked out to some degree. From this analysis it is clear that reliable data are still missing to carry out complete risk assessment. However, on the basis of present knowledge, lactic acid bacteria containing conjugative plasmids should be avoided. Various studies show that consumers in developed countries will accept these products when they offer to them health or taste benefits or a better keepability. For the developing countries the biggest challenge for scientists is most likely to make indigenous fermented food products with strongly improved microbiological stability due to broad spectra bacteriocins produced by lactic acid bacteria. Moreover, these lactic acid bacteria may contribute to health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MR & Marteau P (1995) On the safety of lactic acid bacteria from foods. Int. J. Food Microbiol. 27: 263–264

    Google Scholar 

  • Brockmann E, Jacobsen BL, Hertel C, Ludwig W & Schleifer KH (1996) Monitoring of genetically modified Lactococcus lactis in gnotobiotic and conventional rats by using antibiotic resistance markers and specific probe or primer based methods. Syst. Appl. Microbiol. 19 (in press)

  • Campbell AL (1990) in: Introduction of genetically modified organisms into the Environment (H. A. Mooney and G. Bernardi, Ed.), Scope 44, J. Wiley & Sons, New York

    Google Scholar 

  • Chan HW, Israel MA, Garon CF, Rowe WP & Martin MA (1979) Molecular cloning of polyoma virus DNA in Escherichia coli: Lambda phage vector system. Science 203: 887–892

    Google Scholar 

  • El Alami N, Boquien C-Y & Corrieu G (1992) Batch cultures of recombinant Lactococcus lactis subsp lactis in stirred fermenter. II Plasmid transfer in mixed cultures. Appl. Microbiol. Biotechnol. 37: 364–368

    Google Scholar 

  • Gasser F (1994) Safety of lactic acid bacteria and their occurrence in human clinical infections. Bull. Inst. Pasteur 92: 45–67

    Google Scholar 

  • Geis A, Singh J & Teuber M (1983) Potential of lactic streptococci to produce bacteriocins. Appl. Environ. Microbiol. 45: 205–211

    Google Scholar 

  • Gilliland SE, Nelson CR & Maxwell C (1985) Assimilation of cholesterol of Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377–381

    Google Scholar 

  • Gilliland SE (1990) Health and nutritional benefits for lactic acid bacteria. FEMS Microbiol. Rev. 87: 175–188

    Google Scholar 

  • Giuseppin MLF, Almkerk JW, Heistek JC & Verrips CT (1993) Comparative study on the production of guar α-galactosidase by Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2 in continuous cultures. Appl. Env. Microbiol. 59: 52–59

    Google Scholar 

  • Guinee P (1977) Tweede Jaarverslag KNAW Commissie, pg 94–108, KNAW Amsterdam

    Google Scholar 

  • Hamstra AM & Feenstra MH (1989) SWOKA report, SWOKA, Den Haag

    Google Scholar 

  • Heijs WJM, Midden CJH & RAJ Drabbe (1993) Biotechnologie, houdingen en achtergronden. Technische Universiteit Eindhoven

  • Isberg RR & Falkow S (1985) A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317: 262–264

    Google Scholar 

  • Israel MA, Chan HW, Rowe WP & Martin (1979) Molecular cloning of polyoma virus DNA in Escherichia coli: Plasmid vector system. Science 203: 883–887

    Google Scholar 

  • Jett BD, Huycke MM & Gillmore MS (1994) Virulence of enterococci. Clin. Microbiol. Rev. 7: 462–478

    Google Scholar 

  • Klaver FAM & Van de Meer R (1993) The assumed assimilation of cholesterol by Lactobacilli is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59: 1120–1124

    Google Scholar 

  • Klein G, Bonaparte C & Reuter G (1992) Laktobazillen als Starterkulturen für die Milchwirtschaft unter dem Gesichtspunkt der Sicheren Biotechnologie. Milchwissenschalt 47: 632–636

    Google Scholar 

  • Klijn N, Weerkamp AH & de Vos WM (1991) Identification of mesophyllic lactic acid bacteria by using polymerase chain reaction amplified variable regions of 16S rRNA and specific DNA probes. Appl. Environ. Microbiol. 57: 3390–3393

    Google Scholar 

  • Klijn N, Weerkamp AH & de Vos WM (1995a) Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl. Environ. Microbiol. 61: 788–792

    Google Scholar 

  • Klijn N, Weerkamp AH & de Vos WM (1995b) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl. Environ. Microbiol. 61: 2771–2774

    Google Scholar 

  • Klijn N, Weerkamp AH & de Vos WM (1995c) Biosafety assessment of the application of genetically modified Lactococcus lactis spp. in the production of fermented milk products. System. Appl. Microbiol. 18: 486–492

    Google Scholar 

  • Langella P, LeLoir Y, Ehrlich SD & Gruss A (1993) Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J. Bacteriol. 175: 5806–5813

    Google Scholar 

  • Leenhouts KJ, Kok J & Venema G (1990) Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl. Environ. Microbiol. 56: 2726–2735

    Google Scholar 

  • Maat J, Edens L, Ledeboer AM & Verrips CT (1981) Unilever patent application EP-B 0077109

  • Maat J et al. (1992) Xylanases and their application in Bakery. pp. 349–360. In: Xylans and Xylanases J. Visser et al. ed. Elsevier Science Publishers, Amsterdam 1992

    Google Scholar 

  • Marteau P & Rambaud J-C (1993) Potential of using lactic acid bacteria for therapy and immuno-modulation in man. FEMS Microbiol. Rev. 12: 207–220

    Google Scholar 

  • Martin S & Tait J (1992) Attitudes of selected public groups in the UK to biotechnology pg 28–41. In: ‘Biotechnology in public: a review of research’ (Ed. J Durant), Science Museum for the European Foundation of Biotechnology, London

    Google Scholar 

  • McKay LL & Baldwin KA (1990) Applications for biotechnology: present and future improvements of lactic acid bacteria. FEMS Microbiol. Rev. 87: 3–14

    Google Scholar 

  • Overbeeke N, Hughes S & Fellinger A (1989) Unilever Patent WO-A-91/00920

  • Osinga KA, Bendeker RF, v.d. Plaat JB & de Hollander JA (1988) Gist Brocades patent application EP A 03 06107 A2

  • Rood JI & Cole ST (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55: 621–648

    Google Scholar 

  • Smelt JPPM (1980) Heat resistance of Clostridium botulinum in acid ingredients and its signification for the safety of chilled foods. Thesis. Utrecht University, The Netherlands

    Google Scholar 

  • Smink GCJ & Hamstra AM (1995) Research into consumers needs to be informed about the use of biotechnology in foods. SWOKA report 176

  • Tannock GW (1990) The micro-ecology of lactobacilli in habiting the gastrointestinal tract. In Advances in Microbial Ecology (Marshall KC ed.) 147–171, Plenum Press, New York

    Google Scholar 

  • Tannock GW, Fuller R, Smith SL & Hall MA (1990) Plasmid profiling of members of the family Enterobacteriaceae, lactobacilli and bifidobacteria to study the transmission of bacteria from mothers to infants. J. Clin. Microbiol. 28: 1225–1228

    Google Scholar 

  • Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA & Klaenhammer TR (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100-63. Plasmid 31: 60–71

    Google Scholar 

  • Teuber M (1990) Production and use of chymosin from genetically altered microorganisms. Lebensm. Ind. Milchwirtsch. 35: 1118–1123

    Google Scholar 

  • Van den Berg DJC, Smits A, Pot B, Ledeboer AM, Kersters K, Verbakel JMA & Verrips CT (1993) Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections. Food Biotechnol. 7: 189–205

    Google Scholar 

  • Van den Berg JA, van der Laken KJ, van Ooyen AJJ, Renniers TCHM, Rietveld K, Schaap A, Brake AJ, Schultz K, Moyer D, Richman M & Shuster JR (1990) Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8: 135–139

    Google Scholar 

  • Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12: 221–238

    Google Scholar 

  • Verrips CT (1991) Biotechnology for safe and wholesome foods. Food Biotechnol. 5: 347–364

    Google Scholar 

  • Verrips CT (1995) Structured Risk Assessment of rDNA Products and Consumer Acceptance of These Products. In: Biotechnology (H.J. Rehm and G. Reed Editors), Volume 12 Legal, Economic and ethical dimensions (pp 157–196); VCH, Weinheim.

    Google Scholar 

  • Vogel RF, Becke-Schmid M, Entgens P, Gaier W & Hammes WP (1992) Plasmid transfer and segregation in Lactobacillus curvatus LTH1432 in vitro and during sausage fermentation. System. Appl. Microbiol. 15: 129–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verrips, C.T., van den Berg, D.J.C. Barriers to application of genetically modified lactic acid bacteria. Antonie van Leeuwenhoek 70, 299–315 (1996). https://doi.org/10.1007/BF00395938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395938

Key words

Navigation