Skip to main content
Log in

Distinct chaperone affinity to folding variants of homologous recombinant proteins

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Two β-galactosidase fusion proteins, VP1LAC and LACVP1, contain the same viral capsid protein fused to either the amino or carboxy termini of the enzyme, respectively. Once produced in Escherichia coli, these fusions undergo a rapid, site-limited proteolysis releasing active β-galactosidase fragments indistinguishable from the native enzyme. In vivo binding preferences of DnaK and GroEL chaperones for these homologous protein fragments have been observed, indicating that accessibility of chaperone target sites in degradation products could be determined by the folding pathway undergone by the larger polypeptide before the proteolytic attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219: 11–23.

    Google Scholar 

  • Corchero JL, Viaplana E, Benito A, Villaverde A (1996) The position of the heterologous domain can influence the solubility and proteolysis of β-galactosidase fusion proteins. J. Biotechnol. 48: 191–200.

    Google Scholar 

  • Corchero JL, Cubarsí R, Enfors S-O, Villaverde A (1997) Limited in vivo proteolysis of aggregated proteins. Biochem. Biophys. Res. Commun. 237: 325–330.

    Google Scholar 

  • Corchero JL, Villaverde A (1998) Plasmid maintenance in Escherichia coli recombinant cultures is dramatically, steadily and specifically influenced by features of the encoded proteins. Biotechnol. Bioeng. 58: 625–632.

    Google Scholar 

  • de Crouy-Chanel A, El Yaagoubi A, Kohiyama M, Richarme G (1995) Reversal by GroES of the GroEL preference from hydrophobic amino acids toward hydrophilic amino acids. J. Biol. Chem. 270: 10571–10575.

    Google Scholar 

  • Feliu JX, Cubarsí R, Villaverde A (1998) Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnol. Bioeng. 58: 536–540.

    Google Scholar 

  • Geourgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr. Opin. Biotechnol. 7: 190–197.

    Google Scholar 

  • Goloubinoff P, Diamant S, Weiss C, Azem A (1997) GroES binding regulates GroEL chaperonin activity under heat shock. FEBS Lett. 407: 215–219.

    Google Scholar 

  • Gustavsson K, Bergman T, Veide A, Enfors S-O (1997) In vitro complex-formation between the molecular chaperone DnaK and staphylococcal protein A derivatives produced in Escherichia coli and its use in the purification of DnaK. Biotechnol. Appl. Biochem. 25: 173–180.

    Google Scholar 

  • Hellebust H, Uhlén M, Enfors S-O (1990) Interaction between heat shock protein DnaK and recombinant staphylococcal protein A. J. Bacteriol. 172: 5030–5034.

    Google Scholar 

  • Jacobson RH, Zhang X-J, DuBose RF, Matthews BW (1994) Three-dimensional structure of beta-galactosidase from E. coli. Nature 369: 761–766.

    Google Scholar 

  • Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 683–689.

    Google Scholar 

  • Maniatis D, Sambrook J, Fritsch EF (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Meissner PS, Sisk WP, Berman ML (1987) Bacteriophage lambda cloning system for the construction of directional cDNA libraries. Proc. Natl. Acad. Sci. USA 84: 4171–4175.

    Google Scholar 

  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Richarme G, Kohiyama M (1994) Amino acid specificity of the Escherichia coli chaperone GroEL (heat shock protein 60). J. Biol. Chem. 269: 7095–7098.

    Google Scholar 

  • Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16: 1501–1507.

    Google Scholar 

  • Ruddon RW, Bedows E (1997) Assisted protein folding. J. Biol. Chem. 272: 3125–3128.

    Google Scholar 

  • Sachdev D, Chirgwin JM (1998) Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. Biochem. Biophys. Res. Commun. 244: 933–937.

    Google Scholar 

  • Schauder B, Blöcker H, Frank R, McCarthy JEG (1987) Inducible expression vectors incorporating the Escherichia coli atpE translational initiation region. Gene 72: 279–283.

    Google Scholar 

  • Sherman MY, Goldberg AL (1992) Involvement of the chaperonin dnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J. 11: 71–77.

    Google Scholar 

  • Ullmann A (1984) One-step purification of hybrid proteins which have beta-galactosidase activity. Gene 29: 27–31.

    Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273: 11032–11037.

    Google Scholar 

  • Viaplana E, Feliu JX, Corchero JL, Villaverde A (1997) Reversible activation of a cryptic cleavage site within E. coli β-galactosidase in β-galactosidase fusion proteins. Biophys. Biochem. Acta 1343: 221–226.

    Google Scholar 

  • Wall JG, Plückthum A (1995) Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 507–516.

    Google Scholar 

  • Weickert MJ, Doherty DH, Best EA, Olins PO (1996) Optimization of heterologous protein production in Escherichia coli. Curr. Opin. Biotechnol. 7: 494–499.

    Google Scholar 

  • Weissman JS, Kashi Y, Fenton WA, Horwich AL (1994) GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78: 693–702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boels, K., Carrió, M.M., Arís, A. et al. Distinct chaperone affinity to folding variants of homologous recombinant proteins. Biotechnology Letters 21, 531–536 (1999). https://doi.org/10.1023/A:1005537431259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005537431259

Navigation