Skip to main content

Advertisement

Log in

Analysis of enzyme reactions in situ

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Estimations of metabolic rates in cells and tissues and their regulation on the basis of kinetic properties of enzymes in diluted solutions may not be applicable to intact living cells or tissues. Enzymes often behave differently in living cells because of the high cellular protein content that can lead to homologous and heterologous associations of protein molecules. These associations often change the kinetics of enzymes as part of post-translational regulation mechanisms. An overview is given of these interactions between enzyme molecules or between enzyme molecules and structural elements in the cell, such as the cytoskeleton. Biochemical and histochemical methods are discussed that have been developed for in vivo and in situ analyses of enzyme reactions, particularly for the study of effects of molecular interactions. Quantitative (histochemical) analysis of local enzyme reactions or fluxes of metabolites has become increasingly important. At present, it is possible to calculate local concentrations of substrates in cells or tissue compartments and to express local kinetic parameters in units that are directly comparable with those obtained by biochemical assays of enzymes in suspensions. In situ analysis of the activities of a number of enzymes have revealed variations in their kinetic properties (Km and Vmax) in different tissue compartments. This stresses the importance of in vivo or in situ analyses of cellular metabolism. Finally, histochemical determinations of enzyme activity in parallel with immunohistochemistry for the detection of the total number of enzyme molecules and in situ hybridization of its messenger RNA allow the analysis of regulation mechanisms at all levels between transcription of the gene and post-translational activity modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadeh, S., Case, P. C. & Harrison, R. (1993) Purification of xanthine oxidase from human heart. Biochem. Soc. Trans. 21, 99s.

    Google Scholar 

  • Altman, F. P. (1975) Quantitation in histochemistry: a review of some commercially available microdensitometers. Histochem. J. 7, 375–95.

    Google Scholar 

  • Altman, F. P. (1980) Tissue stabilizer methods in histochemistry. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 81–101. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Aragón, J. J. & Sols, A. (1991) Regulation of enzyme activity in the cell: effect of enzyme concentration. FASEB J. 5, 2945–50.

    Google Scholar 

  • Aragón, J. J., Felíu, J. E., Frenkel, R. A. & Sols, A. (1980) Permeabilization of animal cells for kinetic studies of intracellular enzymes: in situ behavior of the glycolytic enzymes of erythrocytes. Proc. Natl Acad. Sci. USA 77, 6324–8.

    Google Scholar 

  • Arnold, H. & Pette, D. (1968) Binding of glycolytic enzymes to structure proteins of muscle. Eur. J. Biochem. 6, 163–71.

    Google Scholar 

  • Arnold, H. & Pette, D. (1970) Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur. J. Biochem. 15, 360–6.

    Google Scholar 

  • Assfalg-Machleidt, I., Rothe, G., Klingel, S., Banati, R., Mangel, W. F., Valet, G. & Machleidt, W. (1992) Membrane permeable fluorogenic rhodamine substrates for selective determination of cathepsin L. Biol. Chem. H-S. 373, 433–40.

    Google Scholar 

  • Baquet, A., Lavoinne, A. & Hue, L. (1991) Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. J. 273, 57–62.

    Google Scholar 

  • Baron, J., Voigt, J. M., Kawabata, T. T. & Redick, J. A. (1986) Immunohistochemistry. In Regulation of Hepatic Metabolism. Intra- and Intercellular Compartmentation (edited by Thurman, R. G., Kauffman, F. C. & Jungermann, K.), pp. 87–118. New York: Plenum Press.

    Google Scholar 

  • Bauldry, S. A., Nasrallah, V. N. & Bass, D. A. (1992) Activation of NADPH oxidase in human neutrophils permeabilized with staphylococcus aureus a-toxin. A lower Km when enzyme is activated in situ. J. Biol. Chem. 267, 323–30.

    Google Scholar 

  • Belinsky, S. A., Kaufmann, F. C., Ji, S., Lemasters, J. J. & Thurman, R. G. (1981) Stimulation of mixed-function oxidation of 7-ethoxycoumarin in periportal and pericentral regions of the perfused rat liver by xylitol. Eur. J. Biochem. 137, 1–6.

    Google Scholar 

  • Berteloot, A., Vidal, H. & Van DeWerve, G. (1991) Rapid kinetics of liver microsomal glucose-6-phosphatase. Evidence for tight-coupling between glucose-6-phosphate transport and phosphohydrolase activity. J. Biol. Chem. 266, 5497–507.

    Google Scholar 

  • Bitensky, L. (1980) Microdensitometry. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 181–207. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Blanco, C. E. & Sieck, G. C. (1992) Quantitative determination of calcium-activated myosin adenosine triphosphatase activity in rat skeletal muscle fibres. Histochem. J. 24, 431–44.

    Google Scholar 

  • Blanco, C. E., Sieck, G. C. & Edgerton, V. R. (1988) Quantitative histochemical determination of succinic dehydrogenase activity in skeletal muscle fibres. Histochem. J. 20, 230–43.

    Google Scholar 

  • Bosma, H. J., Voordouw, G., DeKok, A. & Veeger, C. (1980) Self-association of the pyruvate dehydrogenase complex from Azotobacter vinelandii in the presence of polyethylene glycol. FEBS Lett. 120, 179–82.

    Google Scholar 

  • Butcher, R. G. (1970) Studies on succinate oxidation. I. The use of intact tissue sections. Exp. Cell Res. 60, 54–60.

    Google Scholar 

  • Butcher, R. G. (1971) The chemical determination of section thickness. Histochemie 28, 131–6.

    Google Scholar 

  • Butcher, R. G. (1972) Precise cytochemical measurement of neotetrazolium formazan by scanning and integrating microdensitometry. Histochemie 32, 171–90.

    Google Scholar 

  • Butcher, R. G. & VanNoorden, C. J. F. (1985) Reaction rate studies of glucose-6-phosphate dehydrogenase activity in sections of rat liver using four tetrazolium salts. Histochem. J. 17, 993–1008.

    Google Scholar 

  • Caspersson, T., Lomakka, G. & Svensson, G. (1957) A coordinated set of instruments for optical quantitative high resolution cytochemistry. Exp. Cell Res. (suppl.) 4, 9–24.

    Google Scholar 

  • Chalmers, G. R. & Edgerton, V. R. (1989) Marked and variable inhibition by chemical fixation of cytochrome oxidase and succinate dehydrogenase in single motoneurons. J. Histochem. Cytochem. 37, 899–901.

    Google Scholar 

  • Chayen, J. & Bitensky, L. (1991) Practical Histochemistry, 2nd edn. London: John Wiley & Sons.

    Google Scholar 

  • Cheung, C. W., Cohen, N. S. & Raijman, L. (1989) Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J. Biol. Chem. 264, 4038–44.

    Google Scholar 

  • Chieco, P., Jonker, A., Melchiorri, C., Vanni, G. & VanNoorden, C. J. F. (1994) A user's guide for avoiding errors in absorbance image cytometry: a review with original experimental observations. Histochem. J. 26, 1–19.

    Google Scholar 

  • Clarke, F., Stephan, P., Morton, D. & Weidemann, J. (1983) The role of actin and associated structural proteins in the organisation of glycolytic enzymes. In Actin: Structure and function in Muscle and Non-Muscle Cells (edited by Barden, J. & Dos Remedios, C.), pp. 249–57. New York: Academic Press.

    Google Scholar 

  • Clarke, F. M., Stephan, P., Huxham, G., Hamilton, D. & Morton, D. J. (1984) Metabolic dependence of glycolytic enzyme binding in rat and sheep heart. Eur. J. Biochem. 138, 643–9.

    Google Scholar 

  • Clarke, F., Stephan, P., Morton, D. & Weidemann, J. (1985a) Glycolytic enzyme organization via the cytoskeleton and its role in metabolic regulation. In Regulation of Carbohydrate Metabolism (edited by Beitner, R.), pp. 1–31. Boca Raton: CRC Press.

    Google Scholar 

  • Clarke, F. M., Morton, D. J., Stephan, P. & Weidemann, J. (1985b) The functional duality of glycolytic enzymes: potential integrators of cytoplasmic structure and function. In Cell Motility: Mechanism and Regulation (edited by Ishikawa, H., Hatano, S. & Sato, H.), pp. 235–50. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Clegg, J. S. (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 246, R133–51.

    Google Scholar 

  • Cohen, N. S., Cheung, C. W. & Raijman, L. (1987) Channeling of extramitochondrial ornithine to matrix ornithine transcarbamylase. J. Biol. Chem. 262, 203–8.

    Google Scholar 

  • Cortassa, S., Caceres, A. & Aon, M. A. (1994) Microtubular protein in its polymerized or nonpolymerized states differentially modulates in vitro and intracellular fluxes catalyzed by enzymes or carbon metabolism. J. Cell. Biochem. 55, 120–32.

    Google Scholar 

  • Cullen, B. M., Halliday, I. M., Kay, G., Nelson, J. & Walker, B. (1992) The application of a novel biotinylated affinity label for the detection of a cathepsin B-like precursor produced by breast-tumour cells in culture. Biochem. J. 283, 461–5.

    Google Scholar 

  • Dagher, S. M. & Hultin, H. O. (1975) Association of glyceraldehyde-3-phosphate dehydrogenase with the particulate fraction of chicken skeletal muscle. Eur. J. Biochem. 55, 185–92.

    Google Scholar 

  • Datta, A., Merz, J. M. & Olin Spivey, H. (1985) Substrate channeling of oxalacetate in solid-state complexes of malate dehydrogenase and citrate synthase. J. Biol. Chem. 260, 15 008–12.

    Google Scholar 

  • Deeley, E. M. (1955) An integrating microdensitometer for biological cells. J. Sci. Instrum. 32, 263–7.

    Google Scholar 

  • Dolken, G., Leisner, E. & Pette, D. (1975) Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isozymes in cross-striated skeletal muscle and heart of the rabbit. Histochemistry 43, 113–21.

    Google Scholar 

  • Fahien, L. A. & Kmiotek, E. (1979) Precipitation of complexes between glutamate dehydrogenase and mitochondrial enzymes. J. Biol. Chem. 254, 5983–90.

    Google Scholar 

  • Fahien, L. A. & Kmiotek, E. (1983) Complexes between mitochondrial enzymes and either citrate synthase or glutamate dehydrogenase. Arch. Biochem. Biophys. 220, 386–97.

    Google Scholar 

  • Felix, H. (1982) Permeabilized cells. Anal. Biochem. 120, 211–34.

    Google Scholar 

  • Frederiks, W. M. & Bosch, K. S. (1993) Quantitative aspects of enzyme histochemistry on sections of freeze-substituted glycol methacrylate-embedded rat liver. Histochemistry 100, 297–302.

    Google Scholar 

  • Frieden, C. (1970) Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J. Biol. Chem. 245, 5788–99.

    Google Scholar 

  • Fritz, P., Multhaupt, H., Koenes, J., Lutz, D., Doerrer, R., Schwarzmann, P. & Tuczek, H. V. (1992) Quantitative histochemistry. Prog. Histochem. Cytochem. 243, 1–57.

    Google Scholar 

  • Fulton, A. B. (1982) How crowded is the cytoplasm? Cell 30, 345–7.

    Google Scholar 

  • Furth-Walker, D. & Amy, N. K. (1987) Regulation of xanthine oxidase activity and immunologically detectable protein in rats in response to dietary protein and iron. J. Nutr. 117, 1697–703.

    Google Scholar 

  • Gall, J. G. & Pardue, M. L. (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA 63, 378–83.

    Google Scholar 

  • Gankema, H. S., Laanen, E., Groen, A. K. & Tager, J. M. (1981) Characterization of isolated rat-liver cells made permeable with filipin. Eur. J. Biochem. 119, 409–14.

    Google Scholar 

  • Gankema, H. S., Groen, A. K., Wanders, R. J. A. & Tager, J. M. (1983) Measurement of binding of adenine nucleotides and phosphate to cytosolic proteins in permeabilized rat-liver cells. Eur. J. Biochem. 131, 445–51.

    Google Scholar 

  • Gebhardt, R. (1992) Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Therapeut. 53, 275–354.

    Google Scholar 

  • Gerbhardt, R. & Mecke, D. (1993) Heterogeneous distribution of glutamine sythetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 2, 567–70.

    Google Scholar 

  • Glick, D. (1977) The contribution of microchemical methods of histochemistry to the biological sciences. J. Histochem. Cytochem. 25, 1087–101.

    Google Scholar 

  • Goldstein, D. J. (1981) Errors in microdensitometry. Histochem. J. 13, 251–67.

    Google Scholar 

  • Gordon, M. & Robertson, W. R. (1986) The application of continuous monitoring microdensitometry to an analysis of NAD+ binding and 3 β-hydroxy-Δ5-steroid dehydrogenase activity in the regressing corpus luteum of the pro-oestrous rat ovary. Histochem. J. 18, 41–4.

    Google Scholar 

  • Gossrau, R. (1980) Conventional techniques for membrane-bound enzymes. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 67–80. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Gossrau, R. & Lojda, Z. (1980) Study on dipeptidylpeptidase II (DPP II). Histochemistry 70, 53–76.

    Google Scholar 

  • Gowda, L. R., Joshi, M. S. & Bhat, S. G. (1988) In situ assay of intracellular enzymes of yeast (Kluyveromyces fragilis) by digitonin permeabilization of cell membrane. Anal. Biochem. 175, 531–6.

    Google Scholar 

  • Groen, A. K., Van DerMeer, R., Westerhoff, H. V., Wanders, R. J. A., Akerboom, T. P. M. & Tager, J. M. (1982) Control of metabolic fluxes. In Metabolic Compartmentation (edited by Sies, H.). pp. 9–37. New York: Academic Press.

    Google Scholar 

  • Gutschmidt, S. (1981) ‘In situ’ determinations of apparent Km and Vmax of brush border disaccharidases along the villi of normal human jejunal biopsy specimens. A quantitative histochemical study. Histochemistry 71, 451–62.

    Google Scholar 

  • Gutschmidt, S. & Emde, C. (1981) Early changes in brush border disaccharidase kinetics in rat jejunum following subcutaneous administration of tetraiodothyronine. Histochemistry73, 151–60.

    Google Scholar 

  • Gutschmidt, S. & Gossrau, R. (1981) A quantitative histochemical study of dipeptidylpeptidase IV (DPP IV). Histochemistry 73, 285–304.

    Google Scholar 

  • Gutschmidt, V. S., Lorenz-Meyer, H., Riecken, E. O. & Menge, H. (1978) Mikrodensitometrische Untersuchungen zur Charakterisierung von Enzymaktivitäten am Gewebsschnitt mittels enzymhistochemischer Farbreaktionen. Acta Histochem. (suppl.) 20, 249–58.

    Google Scholar 

  • Gutschmidt, S., Kaul, W. & Riecken, E. O. (1979) A quantitative histochemical technique for the characterisation of αglucosidases in the brush-border membrane of rat jejunum. Histochemistry 63, 81–101.

    Google Scholar 

  • Gutschmidt, S., Lange, U. & Riecken, E. O. (1980) Kinetic characterization of unspecific alkaline phosphatase at different villus sites of rat jejunum. Histochemistry 69, 189–202.

    Google Scholar 

  • Hardonk, M. J. & Koudstaal, J. (1976) Enzyme histochemistry as a link between biochemistry and morphology. Prog. Histochem. Cytochem. 82, 1–68.

    Google Scholar 

  • Hartel-Schenk, S., Gossrau, R. & Reutter, W. (1990) Comparative immunohistochemistry and histochemistry of dipeptidyl peptidase IV in rat organs during development. Histochem. J. 22, 567–78.

    Google Scholar 

  • HÄussinger, D. & Lang, F. (1991) Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim. Biophys. Acta 1071, 331–50.

    Google Scholar 

  • HÄussinger, D. & Lang, F. (1992) Cell volume and hormone action. TIPS 13, 371–3.

    Google Scholar 

  • Häussinger, D., Roth, E., Lang, F. & Gerok, W. (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341, 1330–2.

    Google Scholar 

  • Henderson, B., Loveridge, N. & Robertson, W. R. (1978) A quantitative study of the effects of different grades of polyvinyl alcohol on the activities of certain enzymes in unfixed tissue sections. Histochem. J. 10, 453–63.

    Google Scholar 

  • Hevner, R. F. & Wong-Riley, M. T. T. (1989) Brain cytochrome oxidase: purification, antibody production, and immunohistochemical/histochemical correlations in the CNS. J. Neurosci. 9, 3884–90.

    Google Scholar 

  • Hevner, R. F. & Wong-Riley, M. T. T. (1990) Regulation of cytochrome oxidase protein levels by functional activity in the Macaque monkey visual system. J. Neurosci. 10, 1331–40.

    Google Scholar 

  • Hildebrand, R. (1984) Quantitative and qualitative histochemical investigation on NADP+-dependent dehydrogenases in the limiting plate and the residual parenchyma surrounding terminal hepatic venules. Histochemistry 80, 91–5.

    Google Scholar 

  • Hopwood, D. (1985) Cell and tissue fixation, 1972–1982. Histochem. J. 17, 389–442.

    Google Scholar 

  • Huet, O., Petit, J. M., Ratinaud, M. H. & Julien, R. (1992) NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazoryl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry 13, 532–9.

    Google Scholar 

  • Hulme, E. C. & Tipton, K. F. (1971) The dependence of phosphofructokinase kinetics upon protein concentration. FEBS Lett. 12, 197–200.

    Google Scholar 

  • Ishidoh, K., Takedaezaki, M. & Kominami, E. (1993) Procathepsin-L-specific antibodies that recognize procathepsin-L but not cathepsin-L. FEBS Lett. 322, 79–82.

    Google Scholar 

  • Ji, S., Lemasters, J. J., Christenson, V. & Thurman, R. G. (1982) Periportal and pericentral pyridine nucleotide fluorescence from the surface of perfused livers: evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia. Proc. Natl Acad. Sci. USA 79, 5415–9.

    Google Scholar 

  • Johansson, S., Wide, M., Young, E. & Lindblad, P. (1993) Expression of alkaline phosphatase in the mature mouse placenta visualized by in situ hybridization and enzyme histochemistry. Anat. Embryol. 187, 409–14.

    Google Scholar 

  • John, H. A., Birnstiel, M. L. & Jones, K. W. (1969) RNA-DNA hybrids at the cytological level. Nature 223, 582–7.

    Google Scholar 

  • Jonges, G. N. & VanNoorden, C. J. F. (1989) In situ kinetic parameters of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase in different areas of the rat liver acinus. Histochem. J. 21, 585–94.

    Google Scholar 

  • Jonges, G. N., VanNoorden, C. J. F. & Gossrau, R. (1990) Quantitative histochemical analysis of glucose-6-phosphatase activity in rat liver using an optimized ceriumdiaminobenzidine method. J. Histochem. Cytochem. 38, 1413–9.

    Google Scholar 

  • Jonges, G. N., VanNoorden, C. J. F. & Lamers, W. H. (1992) In situ kinetic parameters of glucose-6-phosphatase in the rat liver lobulus. J. Biol. Chem. 267, 4878–81.

    Google Scholar 

  • Jonges, G. N., Vogels, I. M. C., Bosch, K. S., Dingemans, K. P. & VanNoorden, C. J. F. (1993) Experimentally induced colon cancer metastases in the rat liver affect the proliferation rate and capacity for purine catabolism in liver cells. Histochemistry 100, 41–51.

    Google Scholar 

  • Jonges, G. N., Vogels, I. M. C. & Van Noorden, C. J. F. (1994) Effects of partial hepatectomy, phenobarbital and 3-methylcholanthrene on kinetic parameters of glucose-6-phosphate and phosphogluconate dehydrogenase in situ in periportal, intermediate and pericentral zones of rat liver lobules. Biochim. Biophys. Acta (in press).

  • Jonker, A., Geerts, W. J. C., Charles, R., Lamers, W. H. & Van Noorden, C. J. F. (1995) Image analysis and image processing as a tool to measure initial rates of enzyme reactions throughout the liver lobule with glutamate dehydrogenase as a model system. J. Histochem. Cytochem. 43, in press.

  • Jungermann, K. & Katz, N. (1989) Functional specialization of different hepatocyte populations. Physiol. Rev. 69, 708–64.

    Google Scholar 

  • Jungermann, K. & Sasse, D. (1978) Heterogeneity of liver parenchymal cells. Trends Biochem. Sci. 3, 198–202.

    Google Scholar 

  • Jungermann, K. & Thurman, R. G. (1992) Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme 46, 33–58.

    Google Scholar 

  • Jungermann, K., Heilbronn, R., Katz, N. & Sasse, D. (1982) The glucose/glucose-6-phosphate cycle in the periportal and perivenous zone of rat liver. Eur. J. Biochem. 123, 429–36.

    Google Scholar 

  • Katz, N. R. (1989) Methods for the study of liver cell heterogeneity. Histochem. J. 21, 517–29.

    Google Scholar 

  • Kennett, C. N., Cox, S. W. & Eley, B. M. (1994a) Comparative histochemical, biochemical and immunocytochemical studies of cathepsin B in human gingiva. J. Periodont. Res. 29, 201–13.

    Google Scholar 

  • Kennett, C. N., Cox, S. W. & Eley, B. M. (1994b) Localisation of active and inactive elastase, alpha-1-proteinase inhibitor and alpha-2-macroglobuIin in human gingiva. J. Dent. Res. (in press).

  • Kohen, E., Thorell, B., Kohen, C. & Michaelis, M. (1973) Rapid microfluorometry for biochemistry of the living cell in correlation with cytomorphology and transport phenomena. In Fluorescence Techniques in Cell Biology (edited by Thaer, A. A. & Sernetz, M.), pp. 219–33. Berlin: Springer Verlag.

    Google Scholar 

  • Kohen, E., Kohen, C., Salmon, J. M., Bengtsson, G. & Thorell, B. (1974) Rapid microspectrofluorimetry for biochemical and metabolic studies in single living cells. Biochim. Biophys. Acta 263, 575–83.

    Google Scholar 

  • Kohen, E., Hirschberg, J. G., Kohen, C., Wouters, A., Pearson, A., Salmon, J.-M. & Thorell, B. (1975) Multichannel microspectrophotometry for topographic and spectral analysis of NAD(P)H fluorescence in single living cells. Biochim. Biophys. Acta 396, 149–54.

    Google Scholar 

  • Kohen, E., Kohen, C., Hirschberg, J. G., Wouters, A. W., Thorell, B., Westerhoff, H. V. & Charyulu, K. K. N. (1983) Metabolic control and compartmentation in single living cells. Cell Biochem. Funct. 1, 3–16.

    Google Scholar 

  • Kohen, E., Kohen, C., Morliere, P., Santus, R., Reyftmann, J. P., Dubertret, L., Hirschberg, J. G. & Coulomb, B. (1986) A microspectrofluorometric study of the effect of anthralin, an antipsoriatic drug, on cellular structures and metabolism. Cell Biochem. Funct. 4, 157–68.

    Google Scholar 

  • Kooij, A. (1994) A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. Histochem. J. 26, 889–915.

    Google Scholar 

  • Krieger, K., Maly, I. P., Toranelli, M., Crotet, V. & Sasse, D. (1994) Ultrathin-layer microelectrophoretic determination of lactate dehydrogenase isoenzymes in corneal and conjunctival epithelium of the cow. Histochemistry 101, 271–5.

    Google Scholar 

  • Kugler, P. (1981) Kinetic and morphometric measurements of enzyme reactions in tissue sections with a new instrumental setup. Histochemistry 71, 433–49.

    Google Scholar 

  • Kugler, P. (1982a) Aminopeptidase A is angiotensinase A. I. Quantitative histochemical studies in the kidney glomerulus. Histochemistry 74, 229–45.

    Google Scholar 

  • Kugler, P. (1982b) Aminopeptidase A is angiotensinase A. II. Biochemical studies on aminopeptidase A and M in rat kidney homogenate. Histochemistry 74, 247–61.

    Google Scholar 

  • Laborde, K., Bussieres, L., DeSmet, A., Dechaux, M. & Sachs, C. (1990) Quantification of renal Na-K-ATPase activity by image analysing system. Cytometry 11, 859–68.

    Google Scholar 

  • Lamers, W. H., Hilberts, A., Furt, E., Smith, J., Jonges, G. N., VanNoorden, C. J. F., Gaasbeek Janzen, J. W., Charles, R. & Moorman, A. F. M. (1989) Hepatic enzymic zonation: a reevaluation of the concept of the liver acinus. Hepatology 10, 72–6.

    Google Scholar 

  • Larsson, L.-I. (1988) Immunocytochemistry. Theory and Practice. Boca Raton: CRC.

    Google Scholar 

  • Lawrence, G. M., Beesley, A. C. H., Mason, G. I., Thompson, M., Walker, D. G. & Matthews, J. B. (1989) A comparison of histochemically and biochemically determined kinetic parameters for brain hexokinase type I. Inst. Phys. Conf. Ser. 98, 667–70.

    Google Scholar 

  • Lee, J. C. & Lee, L. L. Y. (1979) Interaction of calf brain tubulin with poly(ethylene glycols). Biochemistry 18, 5518–26.

    Google Scholar 

  • Lee, J. C. & Lee, L. L. Y. (1981) Preferential solvent interactions between proteins and polyethylene glycols. J. Biol. Chem. 256, 625–31.

    Google Scholar 

  • Lei, K.-J., Shelly, L. L., Pan, C.-J., Sidbury, J. B. & Chou, J. Y. (1993) Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262, 580–3.

    Google Scholar 

  • Lemasters, J. J., Ji, S. & Thurman, R. G. (1986) New micromethods for studying sublobular structure and function in the isolated perfused rat liver. In Regulation of Hepatic Metabolism: Intra- and Intercellular Compartmentation (edited by Thurman, R. G., Kauffman, F. C. & Jungermann, K.), pp. 159–184. New York: Plenum.

    Google Scholar 

  • Leytus, S. P., Melhado, L. L. & Mangel, W. F. (1983a) Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209, 299–307.

    Google Scholar 

  • Leytus, S. P., Patterson, W. L. & Mangel, W. F. (1983b) New class of sensitive and selective fluorogenic substrates for serine proteinases. Biochem. J. 215, 253–60.

    Google Scholar 

  • Liang, B. & Petty, H. R. (1992) Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J. Cell Physiol. 152, 145–56.

    Google Scholar 

  • Ling, G. N., Walton, C. L. & Ochsenfeld, M. M. (1981) A unitary cause for the exclusion of Na+ and other solutes from living cells, suggested by effluxes of Na+, D-arabinose, and sucrose from normal, dying, and dead muscles. J. Cell Physiol. 106, 385–98.

    Google Scholar 

  • Liou, R.-S. & Anderson, S. (1980) Activation of rabbit muscle phosphofructokinase by F-actin and reconstituted thin filaments. Biochemistry 19, 2684–8.

    Google Scholar 

  • Loud, A. V. (1968) Quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. Cell Biol. 37, 27–46.

    Google Scholar 

  • Makino, N., Mochizuki, Y., Bannai, S. & Sugita, Y. (1994) Kinetic studies on the removal of extracellular hydrogen peroxide by cultured fibroblasts. J. Biol. Chem. 269, 1020–5.

    Google Scholar 

  • Maly, I. P. & Sasse, D. (1988) Nutritional and gonadal effects on the intra-acinar profiles of low-Km and high-Km aldehyde dehydrogenase activity in rat liver. Histochemistry 88, 387–93.

    Google Scholar 

  • Maly, I. P. & Sasse, D. (1991) Intraacinar profiles of alcohol dehydrogenase and aldehyde dehydrogenase activities in human liver. Gastroenterology 101, 1716–23.

    Google Scholar 

  • Maly, I. P. & Toranelli, M. (1993) Ultrathin-layer zone electrophoresis of lactate dehydrogenase isoenzymes in microdissected liver samples. Analyt. Biochem. 214, 379–88.

    Google Scholar 

  • Markovic, N., Markovic, O., Roberts, J. & Markovic, S. (1994) A new assay for intracellular measurement of inosine monophosphate dehydrogenase activity: a guide for better selection of patients for enzyme-targeted chemotherapy. J. Histochem. Cytochem. 42, 23–35.

    Google Scholar 

  • Masters, C. J. (1981) Interactions between soluble enzymes and subcellular structure. CRC Crit. Rev. Biochem. 11, 105–43.

    Google Scholar 

  • Matsumoto, T. & Schwartz, G. J. (1992) Novel method for performing carbonic anhydrase histochemistry and immunocytochemistry on cryosections. J. Histochem. Cytochem. 40, 1223–7.

    Google Scholar 

  • Matsumura, T. & Thurman, R. G. (1983) Measuring rates of O2 uptake in periportal and pericentral regions of liver lobule: stop-flow experiments with perfused liver. Am. J. Physiol. 244, G656–9.

    Google Scholar 

  • Matsumura, T., Kashiwagi, T., Meren, H. & Thurman, R. G. (1984) Gluconeogenesis predominates in periportal regions of the liver lobule. Eur. J. Biochem. 144, 409–15.

    Google Scholar 

  • Medina, R., Aragon, J. J. & Sols, A. (1985) Effect of polyethylene glycol on the kinetic behaviour of pyruvate kinase and other potentially regulatory liver enzymes. FEBS Lett. 180, 77–80.

    Google Scholar 

  • Meijer, A. J., Lamers, W. H. & Chamuleau, R. A. F. M. (1990) Nitrogen metabolism and ornithine cycle function. Physiol. Rev. 70, 701–48.

    Google Scholar 

  • Meijer, A. J., Baquet, A., Gustafson, L., VanWoerkom, G. M. & Hue, L. (1992) Mechanism of activation of liver glycogen synthase by swelling. J. Biol. Chem. 267, 5823–8.

    Google Scholar 

  • Meijer, A. J., Gustafson, L. A., Luiken, J. J. F. P., Blommaart, P. J. E., Caro, H. P., VanWoerkom, G. M., Sprink, C. & Boon, L. (1993) Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes. Eur. J. Biochem. 215, 449–54.

    Google Scholar 

  • Minaschek, G., Gröschel-Stewart, U., Blum, S. & Bereiter-Hahn, J. (1992) Microcompartmentation of glycolytic enzymes in cultured cells. Eur. J. Cell Biol. 58, 418–28.

    Google Scholar 

  • Minton, A. P. (1981) Excluded volume as a determinant of macromolecular structure and reactivity. Biochemistry 20, 2093–120.

    Google Scholar 

  • Minton, A. P. (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol. Cell. Biochem. 55, 119–40.

    Google Scholar 

  • Minton, A. P. & Wilf, J. (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20, 4821–6.

    Google Scholar 

  • Moorman, A. F. M., DeBoer, P. A. J., Vermeulen, J. L. M. & Lamers, W. H. (1993) Practical aspects of radio-isotopic in situ hybridization on RNA. Histochem. J. 25, 251–66.

    Google Scholar 

  • Mueller-Klieser, W. & Walenta, S. (1993) Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single proton imaging. Histochem. J. 25, 407–20.

    Google Scholar 

  • Nakae, Y. & Shono, M. (1984) Kinetic behaviour of succinate dehydrogenase of three fibre types in skeletal muscle. I. Effects of temperature and a competitive inhibitor. Histochem. J. 16, 1207–17.

    Google Scholar 

  • Nakae, Y. & Stoward, P. J. (1992) Initial reaction kinetics of succinate dehydrogenase in mouse liver studied with a real-time image analyser system. Histochemistry 98, 7–12.

    Google Scholar 

  • Nakae, Y. & Stoward, P. J. (1993) Estimating the initial reaction velocity of a soluble dehydrogenase in situ. Histochem. J. 25, 199–205.

    Google Scholar 

  • Nakae, Y. & Stoward, P. J. (1994) The diverse Michaelis constants and maximum velocities of lactate dehydrogenase in situ in various types of cell. Histochem. J. 26, 292–7.

    Google Scholar 

  • Newsholme, E. A. & Start, C. (1976) Regulation in Metabolism. London: Wiley.

    Google Scholar 

  • Newsholme, E. A., Crabtree, B. & Zammit, V. A. (1980) Use of enzyme activities as indices of maximum rates of fuel utilization. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 245–58. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Novikoff, A. B. (1959) Cell heterogeneity within the hepatic lobule of the rat (staining reactions). J. Histochem. Cytochem. 7, 240–4.

    Google Scholar 

  • Old, S. L. & Johnson, M. A. (1989) Methods of microphotometric assay of succinate dehydrogenase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem. J. 21, 545–55.

    Google Scholar 

  • O'Reilly, G. & Clarke, F. (1993) Identification of an actin binding region in aldolase. FEBS Lett. 321, 69–72.

    Google Scholar 

  • Ornstein, L. (1952) The distributional error in microspectrophotometry. Lab. Invest. 1, 250–62.

    Google Scholar 

  • Ovadi, J. (1988) Old pathway - new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem. Sci. 13, 486–90.

    Google Scholar 

  • Ovádi, J., Aragón, J. J. & Sols, A. (1986) Phosphofructokinase and fructosebiphosphatase from muscle can interact at physiological concentrations with mutual effects on their kinetic behavior. Biochem. Biophys. Res. Commun. 153, 852–6.

    Google Scholar 

  • Pagliaro, L. & Taylor, D. L. (1988) Aldolase exists in both the fluid and solid phases of cytoplasm. J. Cell Biol. 107, 981–91.

    Google Scholar 

  • Pagliaro, L. & Taylor, D. L. (1992) 2-Deoxyglucose and cytochalasin D modulate aldolase mobility in living 3T3 cells. J. Cell Biol. 118, 859–63.

    Google Scholar 

  • Pette, D. & Brandau, H. (1962) Intracellular localization of glycolytic enzymes in cross-striated muscles of Locusta migratoria. Biochem. Biophys. Res. Commun. 9, 367–70.

    Google Scholar 

  • Pette, D. & Hofer, H. W. (1980) The constant proportion enzyme group concept in the selection of reference enzymes in metabolism. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 231–44. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Polak, J. M. & VanNoorden, S. (1986) Immunocytochemistry. Modern Methods and Applications. 2nd edn. Bristol: Wright.

    Google Scholar 

  • Powers-Lee, S. G., Mastico, R. A. & Bendayan, M. (1987) The interaction of rat liver carbamoyl phosphate synthetase and ornithine transcarbamoylase with inner mitochondrial membranes. J. Biol. Chem. 262, 15 683–8.

    Google Scholar 

  • Reeves, R. E. & Sols, A. (1973) Regulation of Escherichia coli phosphofructokinase in situ. Biochem. Biophys. Res. Commun. 50, 459–66.

    Google Scholar 

  • Reinhart, G. D. & Hartleip, S. B. (1987) Perturbation of the quaternary structure and allosteric behavior of rat liver phosphofructokinase by polyethylene glycol. Arch. Biochem. Biophys. 258, 65–76.

    Google Scholar 

  • Robertson, W. R., Frost, J., Høyer, P. E. & Weinkove, C. (1982) 20α-Hydroxysteroid dehydrogenase activity in the rat corpus luteum, a quantitative cytochemical study. J. Steroid Biochem. 17, 237–43.

    Google Scholar 

  • Roels, F. & Cornelis, A. (1989) Heterogeneity of catalase staining in human hepatocellular peroxisomes. J. Histochem. Cytochem. 37, 331–7.

    Google Scholar 

  • Rogalski, A. A., Steck, T. L. & Waseem, A. (1989) Association of glyceraldehyde-3-phosphate dehydrogenase with the plasma membrane of the intact human red blood cell. J. Biol. Chem. 264, 6438–46.

    Google Scholar 

  • Rothe, F., Wolf, G. & Schünzel, G. (1990) Immunohistochemical demonstration of glutamate dehydrogenase in the postnatally developing rat hippocampal formation and cerebellar cortex: comparison to activity staining. Neuroscience 39, 419–29.

    Google Scholar 

  • Rothe, G., Klingel, S., Assfalg-Machleidt, I., Machleidt, W., Zirkelbach, C., Banati, R. B., Mangel, W. F. & Valet, G. (1992) Flow cytometric analysis of protease activities in vital cells. Biol. Chem. H.-S. 373, 547–54.

    Google Scholar 

  • Rozhin, J., Gomez, A. P., Ziegler, G. H., Nelson, K. K., Chang, Y. S., Fong, D., Onoda, J. M., Honn, K. V. & Sloane, B. F. (1990) Cathepsin B to cysteine proteinase inhibitor balance in metastatic cell subpopulations isolated from murine tumors. Cancer Res. 50, 6278–84.

    Google Scholar 

  • Sasse, D. (1986) Liver structure and innervation. In Regulation of Hepatic Metabolism: Intra - and Intercellular Compartmentation (edited by Thurman, R. G., Kauffman, F. C. & Jungermann, K.), pp. 3–25. New York: Plenum Press.

    Google Scholar 

  • Sasse, D., Spornitz, U. M. & Maly, I. P. (1992) Liver architecture. Enzyme 46, 8–32.

  • Schellens, J. P. M., Frederiks, W. M., VanNoorden, C. J. F., Vreeling-Sindelárová, H., Marx, F. & McMillan, P. J. (1992) The use of unfixed cryostat sections for electron microscopic study of D-amino acid oxidase activity in rat liver. J. Histochem. Cytochem. 40, 1975–9.

    Google Scholar 

  • Schwan, H. P. & Foster, K. R. (1977) Microwave dielectric properties of tissue. Some comments on the rotational mobility of tissue water. Biophys. J. 17, 193–7.

    Google Scholar 

  • Scott, J. E. (1974) The Feulgen reaction in polyvinyl alcohol or polyethylene glycol solution. ‘Fixation’ by excluded volume. J. Histochem. Cytochem. 22, 833–5.

    Google Scholar 

  • Sigel, P. & Pette, D. (1969) Intracellular localization of glycogenolytic and glycolytic enzymes in white and red rabbit skeletal muscle. J. Histochem. Cytochem. 17, 225–37.

    Google Scholar 

  • Singh, M. B. & Knox, R. B. (1984) Quantitative cytochemistry of β-galactosidase in normal and enzyme deficient (gal) pollen of Brassica campestris: application of the indigogenic method. Histochem. J. 16, 1273–96.

    Google Scholar 

  • Sinowatz, F., Scheubeck, M., Wrobel, K.-H. & Zwack, M. (1983) Histochemical localization and quantification of glucose-6-phosphate dehydrogenase in bovine Leydig cells. Histochem. J. 15, 831–44.

    Google Scholar 

  • Sloane, B. F., Rozhin, J., Moin, K., Zeigler, G., Fong, D. & Muschel, R. J. (1992) Cysteine endopeptidases and their inhibitors in malignant progression of rat embryo fibroblasts. Biol. Chem. H-S. 373, 589–94.

    Google Scholar 

  • Smith, R. E., Reynolds, C. J. & Elder, E. (1992) The evolution of proteinase substrates with special reference to dipeptidylpeptidase IV. Histochem. J. 24, 637–47.

    Google Scholar 

  • Sohar, I. & Katona, G. (1992) Regulation of proteinase activation in mammalian tissues. Biol. Chem. H-S. 373, 567–72.

    Google Scholar 

  • Srere, P. A. (1967) Enzyme concentrations in tissues. Science 158, 936–7.

    Google Scholar 

  • Srere, P. A. (1980) The infrastructure of the mitochondrial matrix. Trends Biochem. Sci. 5, 120–1.

    Google Scholar 

  • Srere, P. A. & Ovádi, J. (1990) Enzyme-enzyme interactions and their metabolic role. FEBS Lett. 268, 360–4.

    Google Scholar 

  • Srivastava, D. K. & Bernhard, S. A. (1984) Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase. Biochemistry 23, 4538–45.

    Google Scholar 

  • Srivastava, D. K. & Bernhard, S. A. (1986) Metabolite transfer via enzyme—enzyme complexes. Science 234, 1081–6.

    Google Scholar 

  • Srivastava, D. K. & Bernhard, S. A. (1987) Biophysical chemistry of metabolic reaction sequences in concentrated enzyme solution and in the cell. Ann. Rev. Biophys. Chem. 16, 175–204.

    Google Scholar 

  • Srivastava, D. K., Bernhard, S. A., Langridge, R. & McClarin, J. A. (1985) Molecular basis for the transfer of nicotinamide adenine dinucleotide among dehydrogenases. Biochemistry 24, 629–35.

    Google Scholar 

  • Stanton, R. C., Seifter, J. L., Boxer, D. C., Zimmerman, E. & Cantley, L. C. (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. J. Biol. Chem. 266, 12 442–8.

    Google Scholar 

  • Stephan, P., Clarke, F. & Morton, D. (1986) The indirect binding of triose-phosphate isomerase to myofibrils to form a glycolytic enzyme mini-complex. Biochim. Biophys. Acta 873, 127–35.

    Google Scholar 

  • Stoward, P. J. & Pearse, A. G. E. (1991) Histochemistry. Theoretical and Applied, vol. 3, 4th edn. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Swezey, R. R. & Epel, D. (1986) Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements. J. Cell Biol. 103, 1509–15.

    Google Scholar 

  • Swezey, R. R. & Epel, D. (1988) Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs. Proc. Natl Acad. Sci. USA 85, 812–6.

    Google Scholar 

  • Swezey, R. R. & Epel, D. (1992) The use of caged substrates to assess the activity of 6-phosphogluconate dehydrogenase in living sea urchin eggs. Exp. Cell Res. 201, 366–72.

    Google Scholar 

  • Thorell, B. (1981) Flow cytometric analysis of cellular endogenous fluorescence simultaneously with emission from exogenous fluorochromes, light scatter and absorption. Cytometry 2, 39–43.

    Google Scholar 

  • Thorell, B. (1983) Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels. Cytometry 4, 61–5.

    Google Scholar 

  • Tohyama, Y., Kameji, T. & Hayashi, S. (1991) Mechanisms of dramatic fluctuations of ornithine decarboxylase activity upon tonicity changes in primary cultured rat hepatocytes. Eur. J. Biochem. 202, 1327–31.

    Google Scholar 

  • Toth, A., Tischler, M. E., Pal, M., Koller, A. & Johnson, P. C. (1992) A multipurpose instrument for quantitative intravital microscopy. J. Appl. Physiol. 73, 296–306.

    Google Scholar 

  • Van DenMunckhof, R. J. M., Vreeling-Sindelárová, H., Schellens, J. P. M. & Frederiks, W. M. (1994) Localization of uric acid oxidase activity in core and matrix of peroxisomes as detected in unfixed cryostat sections of rat liver. J. Histochem. Cytochem. 42, 177–83.

    Google Scholar 

  • VanDuijn, P. (1976) Prospects of microscopical cytochemistry. Histochem. J. 8, 653–76.

    Google Scholar 

  • VanDuijn, P. (1991) Model systems. Principles and practice of the use of matrix-immobilized enzymes for the study of the fundamental aspects of cytochemical enzyme methods. In Histochemistry. Theoretical and Applied (edited by Stoward, P. J. & Pearse, A. G. E.), vol. 3, 4th edn., pp. 433–72. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • VanNoorden, C. J. F. (1989) Principles of cytophotometry in enzyme histochemistry and validity of the reactions. Acta Histochem. (suppl.) 37, 21–35.

    Google Scholar 

  • VanNoorden, C. J. F. & Butcher, R. G. (1991) Quantitative enzyme histochemistry. In Histochemistry. Theoretical and Applied (edited by Stoward, P. J. & Pearse, A. G. E.), vol. 3, 4th edn., pp. 355–432. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • VanNoorden, C. J. F. & Frederiks, W. M. (1992) Enzyme Histochemistry. A Laboratory Manual of Current Methods. Oxford: Oxford University Press.

    Google Scholar 

  • VanNoorden, C. J. F. & Jonges, G. N. (1992) Molar extinction coefficients of lead sulfide and polymerized diaminobenzidine as final reaction products of histochemical phosphatase reactions. Cytometry 13, 644–8.

    Google Scholar 

  • VanNoorden, C. J. F. & Vogels, I. M. C. (1989) Polyvinyl alcohol and other tissue protectants in enzyme histochemistry: a consumer's guide. Histochem. J. 21, 373–9.

    Google Scholar 

  • VanNoorden, C. J. F., Dolbaere, F. & Aten, J. (1989) Flow cytofluorometric analysis of enzyme reactions based on quenching of fluorescence by the final reaction product: detection of glucose-6-phosphate dehydrogenase deficiency in human erythrocytes. J. Histochem. Cytochem. 37, 1313–8.

    Google Scholar 

  • VanRaamsdonk, W., VanDen Bogert, C., Smit-Onel, M. J., Muijsers, A. O. & Diegenbach, P. C. (1994) Combined quantitative immuno- and enzyme cytochemistry of cytochrome c oxidase in sections of neural tissue and cultured cells. Acta Histochem. 96, 19–32.

    Google Scholar 

  • VanSteveninck, J., Paardekooper, M., Dubbelman, T. M. A. R. & Ben-Hur, E. (1991) Anomalous properties of water in macromolecular gels. Biochim. Biophys. Acta 1115, 96–100.

    Google Scholar 

  • Walsh, T. P., Clarke, F. M. & Masters, C. J. (1977) Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle. Biochem. J. 165, 165–7.

    Google Scholar 

  • Watanabe, J., Asaka, Y., Amatsu, T. & Kanamura, S. (1992) A computer-assisted dual wavelength microphotometry system for the measurement of cytochrome P-450 content in sections. Acta Histochem. Cytochem. 25, 65–9.

    Google Scholar 

  • Wiame, J. M. (1971) The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanisms. Curr. Top. Cell. Regul. 4, 1–38.

    Google Scholar 

  • Wiggins, P. M. (1982) A possible mechanism for the Ca-ATPase of sarcoplasmic reticulum. J. Theor. Biol. 99, 645–64.

    Google Scholar 

  • Willemsen, R., Van DerPloeg, A. T., Busch, H. F. M., Zondervan, P. E., VanNoorden, C. J. F. & Reuser, A. J. J. (1993) Synthesis and in situ localization of lysosomal α-glucosidase in muscle of an unusual variant of glycogen storage disease type II. Ultrastruct. Pathol. 17, 515–27.

    Google Scholar 

  • Wilson, J. E. (1978) Ambiquitous enzymes: variation in intra-cellular distribution as a regulatory mechanism. Trends Biochem. Sci. 3, 124–5.

    Google Scholar 

  • Yamamoto, T., Morikawi, Y., Takahashi, S., Hada, T., Suda, M., Imanishi, H., Agbedana, O. E., Nanahoshi, M. & Higashino, K. (1991) A xanthinuric family - the proposita having immunologically reactive xanthine oxidase but no xanthine oxidase activity. In Purine and Pyrimidine Metabolism in Man VII part A: Chemotherapy, ATP Depletion, and Gout (edited by Harkness, R. A., Elion, G. B. & Zöllner, N.), pp. 369–372. New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Noorden, C.J.F., Jonges, G.N. Analysis of enzyme reactions in situ . Histochem J 27, 101–118 (1995). https://doi.org/10.1007/BF00243905

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243905

Keywords

Navigation