Skip to main content
Log in

Immunohistochemical localization of Na+-dependent glucose transporter in the rat digestive tract

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell,G. I.,Kayano,T.,Buse,J. B.,Burant,C. F.,Takeda,J.,Lin,D.,Fukumoto,H. &Seino,S. (1990) Molecular biology of mammalian glucose transporters.Diabetes Care 13, 198–208.

    CAS  PubMed  Google Scholar 

  • Cheng,H. &Leblond,C. P. (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine, I. Columnar cell.Am. J. Anat. 141, 461–80.

    CAS  PubMed  Google Scholar 

  • Coady,M. J.,Pajor,A. M. &Wright,E. M. (1990) Sequence homologies among intestinal and renal Na+/glucose cotransporters.Am. J. Physiol. 259, C605–10.

    CAS  PubMed  Google Scholar 

  • Dongen,J. M.Van,Visser,W. J.,Daems,W. T. &Galjaard,H. (1976) The relation between cell proliferation, differentiation and ultrastructural development in rat intestinal epithelium.Cell Tissue Res. 174, 183–99.

    Article  PubMed  Google Scholar 

  • Ezaki,O.,Kasuga,M.,Akanuma,Y.,Takata,K.,Hirano,H.,Fujita-Yamaguchi,Y. &Kasahara,M. (1986) Recycling of the glucose transporter, the insulin receptor, and insulin in rat adipocytes. Effect of acidtropic agents.J. Biol. Chem. 261, 3295–305.

    CAS  PubMed  Google Scholar 

  • Gould,G. W. &Bell,G. I. (1990) Facilitative glucose transporters: an expanding family.Trends Biochem. Sci. 15, 18–23.

    Article  CAS  PubMed  Google Scholar 

  • Guyton,C. (1991)Textbook of medical physiology, 8th edn. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Hediger,M. A.,Coady,M. J.,Ikeda,T. S. &WrightE. M. (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter.Nature 330, 379–81.

    Article  CAS  PubMed  Google Scholar 

  • Hirayama,B. A. &Wright,E. M. (1992) Glycosylation of the rabbit intestinal brush border Na+/glucose cotransporter.Biochim. Biophys. Acta 1103, 37–44.

    CAS  PubMed  Google Scholar 

  • Hirayama,B. A.,Wong,H. C.,Smith,C. D.,Hagenbuch,B. A.,Hediger,M. A. &Wright,E. M. (1991) Intestinal and renal Na+/glucose cotransporters share common structures.Am. J. Physiol. 261, C296–304.

    CAS  PubMed  Google Scholar 

  • Hwang,E. S.,Hirayama,B. A. &Wright,E. M. (1991) Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine.Biochem. Biophys. Res. Commun. 181, 1208–17.

    Article  CAS  PubMed  Google Scholar 

  • Johnson,G. D. &Araujo,G. M. C. N. (1981) A simple method of reducing the fading of immunofluorescence during microscopy.J. Immunol. Meth. 43, 349–50.

    Article  CAS  Google Scholar 

  • Kimmich,G. A. (1981) Intestinal absorption of sugar. InPhysiology of the Gastrointestinal Tract (edited byJohnson,L. R.) pp. 1035–61. New York: Raven Press.

    Google Scholar 

  • Kinter,W. B. &Wilson,T. H. (1965) Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine.J. Cell Biol. 25, 19–39.

    Article  CAS  Google Scholar 

  • Kong,C. T.,Yet,S. F. &Lever,J. E. (1993) Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters.J. Biol. Chem. 268, 1509–12.

    CAS  PubMed  Google Scholar 

  • Kwon,H. M.,Yamauchi,A.,Uchida,S.,Preston,A. S.,Garcia-Perez,A.,Burg,M. B. &Handler,J. S. (1992) Cloning of the cDNA for a Na+/myo-inositol cotransporter, a hypertonicity stress protein.J. Biol. Chem. 267, 6297–301.

    CAS  PubMed  Google Scholar 

  • Lescale-Matys,L.,Dyer,J.,Scott,D.,Freeman,T. C.,Wright,E. M. &Shirazi-Beechey,S. P. (1993) Regulation of the ovine intestinal Na+/glucose co-transporter (SGLT1) is dissociated from mRNA abundance.Biochem. J. 291, 435–40.

    CAS  PubMed  Google Scholar 

  • Mueckler,M.,Caruso,C.,Baldwin,S. A.,Panico,M.,Blench,I.,Morris,H. R.,Allard,W. J.,Lienhard,G. E. &Lodish,H. F. (1985) Sequence and structure of a human glucose transporter.Science 229, 941–5.

    CAS  PubMed  Google Scholar 

  • Pajor,A. M.,Hirayama,B. A. &Wright,E. M. (1992) Molecular evidence for two renal Na+/glucose cotransporters.Biochim. Biophys. Acta 1106, 216–20.

    CAS  PubMed  Google Scholar 

  • Pessin,J. E. &Bell,G. I. (1992) Mammalian facilitative glucose transporter family: structure and molecular regulation.Ann. Rev. Physiol. 54, 911–30.

    CAS  Google Scholar 

  • Schneider,A. J.,Kinter,W. B. &Stirling,C. E. (1966) Glucose-galactose malabsorption. Report of a case with autoradiographic studies of a mucosal biopsy. New Eng. J. Med.274, 305–12.

    CAS  PubMed  Google Scholar 

  • Silverman,M. (1991) Structure and function of hexose transporters.Annu. Rev. Biochem. 60, 757–94.

    Article  CAS  PubMed  Google Scholar 

  • Smith,M. W.,Turvey,A. &Freeman,T. C. (1992) Appearance of phloridzin-sensitive glucose transport is not controlled at mRNA level in rabbit jejunal enterocyte.Exp. Physiol. 77, 525–8.

    CAS  PubMed  Google Scholar 

  • Stirling,C. E. (1967) High-resolution radioautography of phlorizin-3H in rings of hamster intestine.J. Cell Biol. 35, 605–18.

    CAS  PubMed  Google Scholar 

  • Stirling,C. E. &Kinter,W. B. (1967) High-resolution radioautography of galactose-3H accumulation in rings of hamster intestine.J. Cell Biol. 35, 585–604.

    CAS  PubMed  Google Scholar 

  • Stirling,C. E.,Schneider,A. J.,Wong,M. D. &Kinter,W. B. (1972) Quantitative radioautography of sugar transport in intestinal biopsies from normal humans and a patient with glucose-galactose malabsorptions.J. Clin. Invest. 51, 438–51.

    CAS  PubMed  Google Scholar 

  • Takata,K. &Hirano,H. (1990) Use of fluoresceinphalloidin and DAPI as a counterstain for immunofluorescence microscopic studies with semithin frozen sections.Acta Histochem. Cytochem. 23, 679–83.

    Google Scholar 

  • Takata,K. &Singer,S. J. (1988) Phosphotyrosine-modified proteins are concentrated at the membranes of epithelial and endothelial cells during tissue development in chick embryos.J. Cell Biol. 106, 1757–64.

    Article  CAS  PubMed  Google Scholar 

  • Takata,K.,Kasahara,T.,Kasahara,M.,Ezaki,O. &Hirano,H. (1990) Erythrocyte/HepG2-type glucose transporter is concentrated in cells of blood-tissue barriers.Biochem. Biophys. Res. Commun. 173, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Takata,K.,Ezaki,O.,Kasahara,T.,Kasahara,M. &Hirano,H. (1991a) Localization of two types of glucose transporters in rat kidney.Acta Histochem. Cytochem. 24, 105–10.

    CAS  Google Scholar 

  • Takata,K.,Kasahara,T.,Kasahara,M.,Ezaki,O. &Hirano,H. (1991b) Localization of Na+-dependent active type and erythrocyte/HepG2-type glucose transporters in rat kidney: immunofluorescence and immunogold study.J. Histochem. Cytochem. 39, 287–98.

    CAS  PubMed  Google Scholar 

  • Takata,K.,Kasahara,T.,Kasahara,M.,Ezaki,O. &Hirano,H. (1992) Immunohistochemical localization of Na+-dependent glucose transporter in rat jejunum.Cell Tissue Res. 267, 3–9.

    CAS  PubMed  Google Scholar 

  • Takata,K.,Kasahara,M.,Oka,Y. &Hirano,H. (1993) Mammalian sugar transporters: their localization and link to cellular functions.Acta Histochem. Cytochem. 26, 165–77.

    CAS  Google Scholar 

  • Thorens,B.,Cheng,Z-Q.,Brown,D. &Lodish,H. F. (1990) Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells.Am. J. Physiol. 259, C279–85.

    CAS  PubMed  Google Scholar 

  • Turk,E.,Zabel,B.,Mundlos,S.,Dyer,J. &Wright,E. M. (1991) Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter.Nature 350, 354–6.

    Article  CAS  PubMed  Google Scholar 

  • Wright,E. M. (1993) The intestinal Na+/glucose cotransporter.Annu. Rev. Physiol. 55, 575–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, A., Takata, K., Kasahara, T. et al. Immunohistochemical localization of Na+-dependent glucose transporter in the rat digestive tract. Histochem J 27, 420–426 (1995). https://doi.org/10.1007/BF02389029

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02389029

Keywords

Navigation