Skip to main content
Log in

Studies concerning charged nickel hydroxide electrodes. II. Thermodynamic considerations of the reversible potentials

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper the thermodynamics of mixing are applied to account for the independence of the discharge potential of the nickel hydroxide electrode as a function of nickel oxidation state. The constant potential region is considered to arise from the formation of a pair of co-existing solid solutions having a composition predetermined by the magnitude of the interactions between the oxidized and reduced species. From considerations of the excess-energy terms, it can be shown for a symmetrical potential/ composition profile, that the constant potential region is identical with the standard potentialE 0. The influence of asymmetry on the changes inE 0 are discussed. Consideration has also been made of the influence of dissociation of oxidized and/or reduced species on the potential determining equations. The removal of n-type defects from the nickel(II)-rich phase on discharge is considered to be responsible for the observed secondary discharge plateau at potentials ∼ 300 mV more cathodic than normal. This non-equilibrium behaviour can be explained in terms of a mixed pn-semiconducting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

electrode potential at constant pH(V)

E 0 :

standard electrode potential (V)

R :

the gas constant (J K−1 mole−1)

F :

the Faraday constant (C g-equiv−1)

T :

the absolute temperature (K)

aH+ :

proton activity in the electrolyte

a z :

activity of oxidized species z

a y :

activity of reduced species y

μH+:

chemical potential of the proton

μ e :

chemical potential of the electron

μ oz :

standard chemical potential of species z

μ z :

chemical potential of species z

μ oy :

standard chemical potential of species y

μ y :

chemical potential of species y

μ H,e :

chemical potential of the proton/electron pair

x y orx :

mole fraction of reduced species y

x z :

mole fraction of oxidized species z

G M :

total free energy of mixing (J mole−1)

G R :

free energy of reaction (J mole−1)

G I :

free energy of mixing under ideality (J mole−1)

G E :

excess free energy (J mole−1)

A,A i andB i :

interaction energy parameters (J mole−1)

x u :

mole fraction of y in co-existing phase u

x v :

mole fraction of y in co-existing phase v

γ y :

activity coefficient of undissociated reduced species y

γ z :

activity coefficient of undissociated oxidized species z

γ ±y :

mean ionic activity coefficient of y

γ ±z :

mean ionic activity coefficient of z

γ υy :

activity coefficient of y in phase u

γ uz :

activity coefficient of z in phase u

γ vy :

activity coefficient of y in phase v

γ vz :

activity coefficient of z in phase v

I :

current (A)

S:

cross-sectional area (cm2)

L:

conductor length (cm)

References

  1. P. C. Milner and U. B. Thomas in ‘Advances in Electrochemistry and Electrochemical Engineering’ Vol. 5, Interscience, New York (1967) p. 20.

    Google Scholar 

  2. H. Bode, K. Dehmelt and J. Witte,Electrochim. Acta 11 (1966) 1079.

    Google Scholar 

  3. Idem, Z. Anorg. Chem. 366 (1969) 1.

    Google Scholar 

  4. O. Glemser and J. Einerhand,Z. Anorg. Chem. 261 (1950) 26.

    Google Scholar 

  5. G. W. D. Briggs and W. F. K. Wynne-Jones,Trans. Faraday Soc. 52 (1956) 1260.

    Google Scholar 

  6. Idem, Electrochim. Acta 7 (1962) 241.

    Google Scholar 

  7. E. M. Kuchinskii and B. V. Ershler,Zh. Fiz. Khim. 20 (1946) 539.

    Google Scholar 

  8. G. W. D. Briggs and M. Fleischmann,Trans. Faraday Soc. 67 (1971) 2397.

    Google Scholar 

  9. K. Takahashi, S. Yoshizawa and A. Kozawa, ‘Electrochemistry of Manganese Dioxide and Manganese Dioxide Batteries in Japan’2 (1971) 51, US Branch Office, Electrochem Soc., Japan.

    Google Scholar 

  10. B. E. Conway and E. Gileadi,Canad. J. Chem 40 (1962) 1933.

    Google Scholar 

  11. R. Barnard, C. F. Randell and F. L. Tye,J. Appl. Electrochem.

  12. F. P. Kober,J. Electrochem. Soc. 112 (1965) 1066.

    Google Scholar 

  13. Idem, ibid 114 (1967) 215.

    Google Scholar 

  14. I. K. Kuchkaeva, I. S. Shamina, P. N. Bityutskii and L. A. Chetovskaya,Zhur. Priklad. Spektroskopii 17 (1972) 921.

    Google Scholar 

  15. R. Barnard and G. T. Crickmore, published results.

  16. I. S. Shamina, O. S. Malandin, S. M. Rakhovskaya and L. A. VereshchaginaElectrokhim. 10 (1974) 1571.

    Google Scholar 

  17. S. Atlung,MnO 2 Symposium 1 Cleveknd Ohio, JECS (1975) p. 47.

  18. J. H. Hildebrand and R. L. Scott, ‘The Solubility of Non-Electrolytes’, Reinhold, New York (1948).

    Google Scholar 

  19. E. A. Guggenheim, ‘Mixtures’ Oxford, London (1952).

    Google Scholar 

  20. R. Barnard, G. T. Crickmore, J. A. Lee and F. L. Tye,J. Appl. Electrochem.

  21. W. L. Bragg and E. J. Williams,Proc. Roy. Soc. Sen. A145 (1939) 699.

    Google Scholar 

  22. A. V. Joshi, ‘Fast Ion Transport in Solids’ Edited by Van Gool, North Holland Publishing Co. p. 173.

  23. J. B. Wagner, ‘Fast Ion Transport in Solids’ Edited by Van Gool, North Holland Publishing Co. p. 489.

  24. L. N. Sagoyan, Yu. M. Gulyamov, P. Z. Barsukov and V. E. Dmitrenko,28th I.S.E. Meeting Bulgaria (1977) Extended Abstract 82.

  25. W. M. Latimer, ‘The Oxidation States of the Elements and their Potentials in Aqueous Solutions’ Prentice Hall, New Jersey (1952).

    Google Scholar 

  26. B. J. R. Hodge, R. Bonnaterre and F. Putois, ‘Power Sources 5’ edited by D. H. Collins, Academic Press, New York (1975) p. 219.

    Google Scholar 

  27. M. Pourbaix, ‘Atlas d'Equilibres Electrochimiques’ Gauthier-Villars (1963).

  28. F. A. Lewis, ‘The Palladium/Hydrogen System’, Academic Press, London (1967).

    Google Scholar 

  29. F. L. Tye,Electrochim. Acta. 21 (1976) 415.

    Google Scholar 

  30. M. L. Hitchman,J. Electroanalyt. Chem. 85 (1977) 135.

    Google Scholar 

  31. R. S. Crandall, P. J. Wojtowicz and B. W. Faughnan,Sol. State Comm.,18 (1976) 1409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, R., Randell, C.F. & Tye, F.L. Studies concerning charged nickel hydroxide electrodes. II. Thermodynamic considerations of the reversible potentials. J Appl Electrochem 10, 127–141 (1980). https://doi.org/10.1007/BF00937346

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937346

Keywords

Navigation