Skip to main content
Log in

Calculation of mean current densities in a two rotating disc electrodes system

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A theoretical relationship for mass transfer in the laminar flow region of streaming in a rotating electrolyser was derived by the method of similarity of the diffusion layer for electrodes placed sufficiently far from the rotation axis. The obtained relationship was compared with the known equations valid for systems with axial symmetry. The mean current densities were found from the numerical solution of the convective diffusion equation by the finite-element method and were compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

constant, exponent

c :

concentration

c 0 :

concentration in the bulk phase

C ij :

matrix coefficient

D :

diffusion coefficient

F :

Faraday constant, 96487 C mol−1

h :

interelectrode distance

j :

current density

\(\bar j\) :

mean current density

J :

mass flux density

L j :

base function

n :

number of transferred electrons in electrode reaction

n r :

outer normal to the boundary

\(\dot n\) :

mass flux

N :

number of nodal points in an element

Q :

volume rate of flow

\(\bar Q\) :

mean volume rate of flow

r :

radial coordinate

r 0 :

inner electrode radius

r l :

outer electrode radius

r v :

radius of inlet orifice

r d :

outer disc radius

v r :

radial velocity component

v z :

normal velocity component

z :

normal coordinate

γ:

thickness of the layer in which the equation of convective diffusion is solved

Γ:

boundary of the integration domain

δ:

thickness of the diffusion layer

δ N :

thickness of the Nernst diffusion layer

v :

kinematic viscosity

ω:

angular velocity

Ω:

surface

Re chan :

channel Reynolds numberQ/hv

Re loc :

local Reynolds number,Q/π⋎(r + r 0)

\(\overline {Re} _{loc} \) :

local Reynolds number at mean electrode radius,Q/πv(r 1 +r 0)

Re rot :

rotation Reynolds number, ωr 2d /v

\(\overline {Re} _{rot} \) :

modified rotation Reynolds number at mean electrode radius, ω(r 1+r 0)2/4v

rot :

modified rotation Reynolds number, ω(r+r 0)2/4v

Sc :

Schmidt number,v/D

Sh Δr :

local Sherwood number,j(r-r 0)/nFDc o

\(\overline {Sh} _{\Delta r} \) :

mean Sherwood number,\(\bar j(r_1 - r_0 )/nFDc_0 \)

Ta :

Taylor number,h(ω/v)1/2

References

  1. R. E. W. Jansson,Electrochim. Acta 23 (1978) 1345.

    Google Scholar 

  2. M. Fleischmann, R. E. W. Jansson and R. J. Marshall, Brit. Pat. 04 939 (1976).

    Google Scholar 

  3. F. B. Thomas, P. A. Ramachandran, M. P. Dudukovic and R. E. W. Jansson,J. Appl. Electrochem. 19 (1989) 845.

    Google Scholar 

  4. R. E. W. Jansson and R. J. Marshall,ibid. (1978) 287.

    Google Scholar 

  5. M. Šimek and I. Roušar,Coll. Czech. Chem. Comum 49 (1984) 1122.

    Google Scholar 

  6. A. B. Ferreira and R. E. W. Jansson,Trans. Inst. Chem. Engrs. 57 (1979) 262.

    Google Scholar 

  7. W. J. Albery and R. L. Hitchman, ‘Ring-disc Electrode’, Clarendon Press, Oxford (1971).

    Google Scholar 

  8. R. Dvorak and H. Wendt,Ber. Bunsenges. Phys. Chem. 80 (1976) 77.

    Google Scholar 

  9. I. Roušar, K. Micka and A. Kimla, ‘Electrochemical Engineering l’ Academia, Prague (1985).

    Google Scholar 

  10. K. Rektorys et al., ‘Přehled ušzité matematiky’, Státní nakl. tech. liter., Prague (1968).

    Google Scholar 

  11. R. E. W. Jansson, R. J. Marshall and J. E. Rizzo,J. Appl. Electrochem. 8 (1978) 281.

    Google Scholar 

  12. H. Schlichting, ‘Teoriya pogranichnogo sloya’ Nauka, Moskow (1974).

    Google Scholar 

  13. F. Beck and H. Guthke,Chem.-Ing.-Techn. 41 (1969) 943.

    Google Scholar 

  14. O. C. Zienkiewicz, ‘The Finite-Element Method in Engineering Science’, McGraw-Hill, London (1971).

    Google Scholar 

  15. J. J. Connor and C. A. Brebbia, ‘Finite-Element Techniques for Fluid Flow’, Butterworth, London (1976).

    Google Scholar 

  16. I. Roušar, K. Micka and A. Kimla, ‘Electrochemical Engineering 2’, Academia, Prague (1986).

    Google Scholar 

  17. K. Rektorys, ‘Variační metody v inšzenýrských problémech a v problémech matematické fyziky’, Státní nakl. techn. liter, Prague (1974).

    Google Scholar 

  18. T. J. R. Hughes and A. Brooks, ‘A Theoretical Framework for Petrov-Galerkin Methods with Discontinuous Weighting Functions: Applications to the Streamline-Upwind Procedure’, in ‘Finite Elements in Fluids 4’, John Wiley & Sons, New York (1982).

    Google Scholar 

  19. H. A. Luther and J. O. Wilkes, ‘Applied Numerical Methods’, John Wiley & Sons, New York (1969).

    Google Scholar 

  20. J. C. Bazán and A. J. Arvía,Electrochim. Acta 10 (1965) 1025.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimek, M., Roušar, I. Calculation of mean current densities in a two rotating disc electrodes system. J Appl Electrochem 21, 111–117 (1991). https://doi.org/10.1007/BF01464290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464290

Keywords

Navigation