Skip to main content
Log in

Electrodissolution of aluminium thin film microband electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper discusses the electrodissolution of aluminium thin films as microband electrodes (length = 5 × 10−3 m) in terms of mass transfer determined by voltammetry and a.c.-impedance techniques as a function of bandwidth (20 to 2000 nm) in 0.1m NaOH solution. The anodic polarization curves of the aluminium microband electrodes show that current density is enhanced with decreasing bandwidth. The ac impedance response suggests that a steady-state diffusion layer appears the more markedly, the smaller the bandwidth. The anodic polarization curves are analysed on the basis of the combined Butler-Volmer high field approximation and the semi-cylindrical diffusion field approximation. As a result of the analysis, the electrodissolution proceeds by a mixed kinetic-mass transfer controlled reaction. The analysis also makes it possible to distinguish the semi-cylindrical diffusive mass transfer contribution to the electrodissolution from the kinetic contribution, i.e., mass transfer index linearly diminishes with decreasing bandwidth. The increased current density is attributable to the decreased mass transfer contribution, i.e., the more predominant semi-cylindrical diffusive mass transfer as compared to laminar diffusive mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k a :

anodic kinetic constant

k c :

cathodic kinetic constant

F :

Faraday constant

αs :

kinetic transfer coefficient for anodic reaction

αc :

kinetic transfer coefficient for cathodic reaction

c s :

surface concentration

V :

anodic polarization

D :

diffusion coefficient

d :

diffusion layer thickness

z :

number of electrons transferred

l :

length of microband electrode

w :

bandwidth of microband electrode

r :

radius of cylinder

References

  1. S. Asakura and Ken Nobe,J. Electrochem. Soc. 18 (1971) 19.

    Google Scholar 

  2. J. C. S. Fernandes, M. G. S. Ferreira and C. M. Rangel,J. Appl. Electrochem. 20 (1990) 874.

    Google Scholar 

  3. J. R. Scully, R. P. Frankenthal, K. J. Hanson, D. J. Siconolfi, and J. D. Sinclair,J. Electrochem. Soc. 137 (1990) 1365.

    Google Scholar 

  4. O. E. Barcia, O. R. Mattos and B. Tribollet,ibid. 130 (1992) 446.

    Google Scholar 

  5. P. M. Kovach, W. L. Caudill, D. G. Peters and R. M. Wightman,J. Electroanal. Chem. 185 (1985) 285.

    Google Scholar 

  6. K. Aoki, K. Tokuda and H. Matsuda,ibid. 230 (1987) 61.

    Google Scholar 

  7. R. B. Morris, D. J. Franta and H. S. White,J. Phys. Chem. 91 (1987) 3559.

    Google Scholar 

  8. C. Chandler, J.-B. Ju, R. Atanasoski, and W. H. Smyrl,Corrosion 47 (1991) 179.

    Google Scholar 

  9. R. T. Foley and T. H. Nguyen,J. Electrochem. Soc. 129 (1982) 464.

    Google Scholar 

  10. W. H. Smyrl,ibid. 132 (1985) 1551.

    Google Scholar 

  11. G. S. Frankel,Corros. Sci. 33 (1990) 1203.

    Google Scholar 

  12. J. O'M. Bockris and A. K. V. Reddy, “Modern Electrochemistry”, Vol. 2, Plenum, New York (1970) pp. 1055–9.

    Google Scholar 

  13. Van de Ven and H. Koelmans,J. Electrochem. Soc. 123 (1976) 143.

    Google Scholar 

  14. E. Sabeva, I. Dobrewsky and P. Dineff,J. Appl. Electrochem. 20 (1990) 986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.J., Pyun, S.I. Electrodissolution of aluminium thin film microband electrodes. J Appl Electrochem 23, 1175–1180 (1993). https://doi.org/10.1007/BF00625592

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00625592

Keywords

Navigation