Skip to main content
Log in

Degradation mechanisms of nickel oxide electrodes in zinc/nickel oxide cells with low-zinc-solubility electrolytes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel oxide electrodes that suffered capacity degradation during extended cycling in zinc/nickel oxide cells were examined by a variety of chemical and physical techniques. Nickel hydroxyzincates, which have been speculated to cause such capacity degradation, were also examined. Powder X-ray diffraction experiments indicated that the intersheet distance between layers of turbostratic nickel hydroxide increased when zinc was incorporated. Photoelectron spectra (XPS) showed that this material is probably a mixture of NiOH)2 and ZnO or Zn(OH)2. Raman spectroscopy data also supported this conclusion. XPS indicated that the form of zinc in degraded nickel oxide electrodes is probably ZnO or Zn(OH)2. Significant increases in resistivity were found in cycled nickel oxide electrodes, and optical microscopy provided visible evidence of mechanical damage during cycling. These results suggest that the observed capacity degradation was largely mechanical in nature, and not due to the formation of nickel-zinc double hydroxides, as had been reported by others. Cell-cycling experiments indicated that the mechanical degradation is largely irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Adler, F. R. McLarnon and E. J. Cairns, J. Electrochem. Soc. 140 (1993) 289.

    Google Scholar 

  2. E. Buder, J. Appl. Electrochem. 2 (1972) 301.

    Google Scholar 

  3. I. Arulraj and D. C. Trivedi, Int. J. Hydrogen Energy 14 (1989) 893.

    Google Scholar 

  4. B. E. Conway, M. A. Sattar and D. Gilroy, Electrochim. Acta 25 (1980) 973.

    Google Scholar 

  5. G. Bronoel and J. Reby, ibid. 25 (1980) 973.

    Google Scholar 

  6. K. Kinoshita, ‘Electrochemical Oxygen Technology’, John Wiley & Sons, New York (1992).

    Google Scholar 

  7. D. H. Fritts, J. Power Sources 6 (1981) 327.

    Google Scholar 

  8. Idem, ibid., 12 (1984) 267.

    Google Scholar 

  9. O. Lanzi and U. Landau, J. Electrochem. Soc. 138 (1991) 2527.

    Google Scholar 

  10. M. Natan, D. Belanger, M. Carpenter and M. Wrighton, J. Phys. Chem. 91 (1987) 1834.

    Google Scholar 

  11. A. Briggs, J. Appl. Electrochem. 21 (1982) 999.

    Google Scholar 

  12. V. Dmitrenko, M. Zubov, V. Barsukov and L. Sagoyan, Elektrokhimiya 23 (1987) 1240.

    Google Scholar 

  13. V. Dmitrenko, M. Zubov, V. Baulov, L. Sagoyan and V. Barsukov, ibid. 19 (1983) 852.

    Google Scholar 

  14. H. Bode, K. Dehmelt and J. Witte, Electrochim. Acta 11 (1966) 1079.

    Google Scholar 

  15. V. Romanov, Zh. Priklad. Khim. 34 (1961) 1317.

    Google Scholar 

  16. V. Kozyrin, A. Bachaev, S. Bazarov and V. Flerov, Elektrokhimiya 25 (1989) 267.

    Google Scholar 

  17. V. Gud, V. Nikol'skii, Z. Arkhangel'skaya and G. Reshetova, Zh. Priklad. Khim. 63 (1990) 2650.

    Google Scholar 

  18. C. Faure, C. Delmas and M. J. Fouassier, J. Power Sources 35 (1991) 279.

    Google Scholar 

  19. T. Adler, unpublished data, Lawrence Berkeley Laboratory, Berkeley, CA, March (1994).

  20. C. Johnston and P. R. Graves, Appl. Spectroscopy 44 (1990) 105.

    Google Scholar 

  21. A. H. L. Goff, S. Joiret, B. Saidani and R. Wiart, J. Electroanal. Chem. 263 (1989) 127.

    Google Scholar 

  22. K. S. Kim and N. Winograd, Surf. Sci. 43 (1974) 625.

    Google Scholar 

  23. T. Dickenson, A. F. Povey and P. M. A. Sherwood, J. Chem. Soc. Faraday Trans. 173 (1977) 327.

    Google Scholar 

  24. T. L. Barr, J. Phys. Chem. 82 (1978) 1801.

    Google Scholar 

  25. K. S. Kim, W. E. Baitinger, J. W. Amy and N. Winograd, J. Electron Spect. Rel. Phenom. 5 (1974) 351.

    Google Scholar 

  26. B. P. Lochel and H. H. Strehblow, J. Electrochem. Soc. 1311 (1984) 713.

    Google Scholar 

  27. N. S. McIntyre, T. E. Rummery, M. G. Cook and D. Owen, J. Electrochem. Soc. 123 (1976) 1164.

    Google Scholar 

  28. D. Briggs and M. P. Seah (eds.), ‘Practical Surface Analysis, Volume 1: Auger and X-ray Photoelectron Spectroscopy’, John Wiley & Sons, Chichester (1990).

    Google Scholar 

  29. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, ‘Handbook of X-ray Photoelectron Spectroscopy’, Physical Electronics Division, Perkin-Elmer Coporation, Eden Prairie, Minnesota (1979).

    Google Scholar 

  30. J. H. Linn and W. E. Swartz Jr., Applic. Surf. Sci. 20 (1984) 154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plivelich, R.F., McLarnon, F.R. & Cairns, E.J. Degradation mechanisms of nickel oxide electrodes in zinc/nickel oxide cells with low-zinc-solubility electrolytes. J Appl Electrochem 25, 433–440 (1995). https://doi.org/10.1007/BF00260685

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260685

Keywords

Navigation