Skip to main content
Log in

The anode effect as a fluid dynamic problem

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The so-called anode effect, particularly important in industrial alumina electrolysis, has mostly been interpreted as the consequence of altered wettability of the electrode surface by the melt. By means of a mathematical model assuming isolated large bubbles in contact with the electrode it is shown that the anode effect is the result of the combined action of fluid dynamics and wettability. The interpretation of the incipience of the anode effect obtained by means of a previous, completely different mathematical model is confirmed. The theoretical results are compared with experimental data by various authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anon. [F. Wöhler ?], Ann. Chemie Pharm. 92 (1854) 252.

    Google Scholar 

  2. R. Bunsen, [Poggendorff's] Ann. Physik 92 (1851) 648.

    Google Scholar 

  3. G.-E. Taylor, Trans. Am. Electrochem. Soc. 47 (1925) 301.

    Google Scholar 

  4. L. Ferrand, `Histoire de la science et des techniques de l'aluminium et ses developements industriels', Vol. 1 (Humbert, LargentieÁ re, 1960).

    Google Scholar 

  5. A. I. Beljaev, in A. I. Beljaev (Ed.), `Surface Phenomena in Metallurgical Processes' (Consultants Bureau, New York 1965), p. 3.

    Google Scholar 

  6. R. Piontelli, B. Mazza and P. Pedeferri, Metall. ital. 57(2) (1965) 1.

    Google Scholar 

  7. K. Grjotheim, C. Krohn, M. Malinovský and J. Thonstad, `Aluminium Electrolysis' (Aluminium-Verlag, Düsseldorf, 1982).

    Google Scholar 

  8. U. Erikson and R. Tunold, Proceedings of the International Sympsium on Molten Salts (edited by G. Mamantov) The Electrochemical Society., Pennington, NJ (1987); 87-7, p. 602.

    Google Scholar 

  9. Qiu Z., Chin. J. Met. Sci. 8 (1992) 15.

    Google Scholar 

  10. J. Thonstad, F. Nordmo, A. H. Husøy, K. [Ø Vee and D. C. Austrheim, `Light Metals 1984' (edited by J. P. McGeer) Warrendale (1984), p. 825.

  11. D. Devilliers, F. Lantelme and M. Chemla, Electrochim. Acta 31 (1986) 1235.

    Google Scholar 

  12. E. W. Dewing and E.T. van der Kouwe, J. Electrochem. Soc. 124 (1977) 58.

    Google Scholar 

  13. Qiu Z. and Zhang M., Electrochim. Acta 32 (1987) 607.

    Google Scholar 

  14. K. Arndt and H. Probst, Z. Elektrochemie 29 (1923) 323.

    Google Scholar 

  15. Qiu Z., Wei Q. and You K., 7th Int. Leichtmetalltagung, Leoben-Wien (1981), p. 256.

  16. H. von Wartenberg, Z. Elektrochemie 32 (1926) 330.

    Google Scholar 

  17. A. Coehn and H. Neumann, Z. Physik 23 (1923) 54.

    Google Scholar 

  18. H. G. Müller, Z. Phys. Chemie 65 (1909) 226.

    Google Scholar 

  19. A. I. Beljaev, E. A. Zhemchuzhina and L. A. Firsanova, Physikalische Chemie geschmolzener Salze. Dt. Verlag für Grundstoffindustrie, Leipzig (1964).

    Google Scholar 

  20. B. Mazza, P. Pedeferri, R. Piontelli and A. Tognoni, Electrochim. Metall. 2 (1967) 385.

    Google Scholar 

  21. B. Mazza, P. Pedeferri and G. Re, Electrochim. Acta 23 (1978) 87.

    Google Scholar 

  22. W. Muthmann, H. Hofer and L. Weiss, Ann. Chemie 320 (1902) 231.

    Google Scholar 

  23. H. Vogt, Electrochim. Acta 42 (1997) 2695.

    Google Scholar 

  24. H. Vogt, Electrochim. Acta. 29 (1984) 167.

  25. J. Zoric, I. Roušar and J. Thonstad, J. Appl. Electrochem. 27 (1997) 916.

    Google Scholar 

  26. T. Utigard and J. M. Toguri, `Light Metals 1986' (edited by R. E. Miller), Warrendale (1986), p. 405.

  27. H. Vogt, Electrochim. Acta 25 (1980) 527.

    Google Scholar 

  28. P. L. King and B. J. Welch, J. Appl. Electrochem. 2 (1971) 23.

    Google Scholar 

  29. P. Drossbach, T. Hashino, P. Krahl and W. Pfeiffer, Chemie-Ing.-Technik 33 (1961) 84.

    Google Scholar 

  30. P. Drossbach, Z. Elektrochem. 55 (1951) 38.

    Google Scholar 

  31. N. Watanabe, Y. Fujii and S. Yoshizawa, J. Electrochem. Soc. Japan 31 (1963) 131.

    Google Scholar 

  32. B. Mazza, P. Pedeferri and A. Tognoni, Chimica Ind. 53 (1971) 123.

    Google Scholar 

  33. R. Piontelli, B. Mazza and P. Pedeferri, Electrochim. Acta 16 (1965) 1117.

    Google Scholar 

  34. R. Piontelli, B. Mazza, P. Pedeferri and A. Tognoni, Electrochim. Metall. 2 (1967) 257.

    Google Scholar 

  35. T. Fujii and H. Imura, Int. J. Heat Mass Transfer 15 (1972) 755.

    Google Scholar 

  36. F. N. Ngoya, `The Effect of Electrolytic Gas Evolution on Conductivity'. Dissertation of the University of Dar es Salaam (1983).

  37. J. Thonstad, Electrochim. Acta 12 (1967) 1219.

    Google Scholar 

  38. W. Karpachev, I. L. Dolgov and N. M. Kanchinski, Legkie Metally 3(2), (1934), 20; Chem. Zentralbl. 105 (1934) 3830.

    Google Scholar 

  39. A. I. Beljaev, M. B. Rapoport and L. A. Firsanova, `Metallurgie des Aluminiums', Vol. 1 (Verlag der Technik, Berlin 1956), p. 121.

    Google Scholar 

  40. Qiu Z., Wei C. and Chang M., `Light Metals 1982' edited by J. E. Andersen (Metallurgical Soc. AIME, Warrendale 1982), p. 279.

    Google Scholar 

  41. P. Drossbach and P. Krahl, Z. Elektrochemie, Ber. Bun-senges 62 (1958) 178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, H. The anode effect as a fluid dynamic problem. Journal of Applied Electrochemistry 29, 137–145 (1999). https://doi.org/10.1023/A:1003477004486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003477004486

Navigation