Skip to main content
Log in

Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Recombinant Desulfovibrio vulgaris flavodoxin was produced inEscherichia coli. A complete backbone NMR assignment for the two-electronreduced protein revealed significant changes of chemical shift valuescompared to the oxidized protein, in particular for the flavinemononucleotide (FMN)-binding site. A comparison of homo- and heteronuclearNOESY spectra for the two redox states led to the assumption that reductionis not accompanied by significant changes of the global fold of the protein.The backbone dynamics of both the oxidized and reduced forms of D. vulgarisflavodoxin were investigated using two-dimensional15N-1H correlation NMR spectroscopy.T1, T2 and NOE data are obtained for 95%of the backbone amide groups in both redox states. These values wereanalysed in terms of the ’model-free‘ approach introduced by Lipari andSzabo [(1982) J. Am. Chem. Soc., 104, 4546-;4559, 4559-;4570]. Acomparison of the two redox states indicates that in the reduced speciessignificantly more flexibility occurs in the two loop regions enclosing FMN.Also, a higher amplitude of local motion could be found for the N(3)H groupof FMN bound to the reduced protein compared to the oxidized state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Anderson, R.F. (1983) Biochim. Biophys. Acta, 722, 158-;162.

    Google Scholar 

  • Bloom, M., Reeves, L.W. and Wells, E.J. (1965) J. Chem. Phys., 42, 1615-;1624.

    Google Scholar 

  • Carr, H.Y. and Purcell, E.M. (1954) Phys. Rev., 94, 630-;632.

    Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990a) Biochemistry, 29, 7387-;7401.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc., 112, 4989-;4991.

    Google Scholar 

  • Curley, G.P., Carr, M.C., Mayhew, S.G. and Voordouw, G. (1991) Eur. J. Biochem., 202, 1091-;1100.

    Google Scholar 

  • Dayie, K.T. and Wagner, G. (1994) J. Magn. Reson., A111, 121-;126.

    Google Scholar 

  • Deistung, J. and Thorneley, R.N.F. (1986) Biochem. J., 239, 69-;75.

    Google Scholar 

  • Draper, R.D. and Ingraham, L.L. (1968) Arch. Biochem. Biophys., 125, 802-;808.

    Google Scholar 

  • Dubourdieu, M. and Fox, J.L. (1977) J. Biol. Chem., 252, 1453-;1459.

    Google Scholar 

  • Fushman, D., Weisemann, R., Thüring, H. and Rüterjans, H. (1994) J. Biomol. NMR, 4, 61-;78.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593-;12594.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972-;8979.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359-;375.

    Google Scholar 

  • Knauf, M.A., Löhr, F., Curley, G.P., O’Farrell, P., Mayhew, S.G., Müller, F. and Rüterjans, H. (1993) Eur. J. Biochem., 213, 167-;184.

    Google Scholar 

  • Knauf, M.A., Löhr, F., Blümel, M., Mayhew, S.G. and Rüterjans, H. (1996) Eur. J. Biochem., 238, 423-;434.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-;4559, 4559-;4570.

    Google Scholar 

  • Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989) Biochemistry, 28, 6150-;6156.

    Google Scholar 

  • Mayhew, S.G. and Ludwig, M.L. (1975) In The Enzymes, 3rd ed., Vol. 12 (Ed., Boyer, P.D.), Academic Press, New York, NY, U.S.A., pp. 57-;118.

    Google Scholar 

  • Mayhew, S.G. and Tollin, G. (1992) In Chemistry and Biochemistry of Flavoenzymes, Vol. 3 (Ed., Müller, F.), CRC Press, Boca Raton, FL, U.S.A., pp. 389-;426.

    Google Scholar 

  • Meiboom, S. and Gill, D. (1958) Rev. Sci. Instrum., 29, 688-;691.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988) Numerical Recipes, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Simondson, R.P. and Tollin, G. (1980) Mol. Cell. Biochem., 33, 13-;24.

    Google Scholar 

  • Vervoort, J., Müller, F., LeGall, J., Bacher, A. and Sedlmaier, H. (1985) Eur. J. Biochem., 151, 49-;57.

    Google Scholar 

  • Vervoort, J. (1991) Curr. Opin. Struct. Biol., 1, 889-;894.

    Google Scholar 

  • Watenpaugh, K.D., Sieker, L.C., Jensen, L.H., LeGall, J. and Dubourdieu, M. (1972) Proc. Natl. Acad. Sci. USA, 69, 3185-;3188.

    Google Scholar 

  • Watt, W., Tulinsky, A., Swenson, R.P. and Watenpaugh, K.D. (1991) J. Mol. Biol., 218, 195-;208.

    Google Scholar 

  • Zuiderweg, E.R.P. and Fesik, S.W. (1989) Biochemistry, 28, 2387-;2391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrovat, A., Blümel, M., Löhr, F. et al. Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution. J Biomol NMR 10, 53–62 (1997). https://doi.org/10.1023/A:1018380509735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018380509735

Navigation