Skip to main content
Log in

Separating the contributions to 15N transverse relaxation in a fibronectin type III domain

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In proteins, dynamic mobility is an important feature of structure, stability, and biomolecular recognition. Uniquely sensitive to motion throughout the milli- to picosecond range, rates of transverse relaxation, R2, are commonly obtained for the characterization of chemical exchange, and the construction of motional models that attempt to separate overall and internal mobility. We have performed an in-depth study of transverse relaxation rates of backbone 15N nuclei in TNfn31−90, the third fibronectin type III domain from human tenascin. By combining the results of spin-echo (CPMG) and off-resonance T1ρ experiments, we present R2 rates at effective field strengths of 2 to 40 krad/s, obtaining a full spectrum of 16 independent R2 data points for most residues. Collecting such a large number of replicate measurements provides insight into intrinsic uncertainties. The median standard deviation in R2 for non-exchanging residues is 0.31, indicating that isolated measurements may not be sufficiently accurate for a precise interpretation of motional models. Chemical exchange events on a timescale of 570 μs were observed in a cluster of residues at the C terminus. Rates of exchange for five other residues were faster than the sampled range of frequencies and could not be determined. Averaged 'exchange free' transverse relaxation rates, R20, were used to calculate the diffusion tensor for rotational motion. Despite a highly asymmetric moment of inertia, the narrow angular dispersion of N-H vectors within the β sandwich proves insufficient to define deviations from isotropic rotation. Loop residues provide exclusive evidence for axially symmetric diffusion (Dpar/Dper=1.55).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akke, M., Liu, J., Cavanagh, J., Erickson, H.P. and Palmer, A.G. (1998) Nat. Struct. Biol., 5, 55–59.

    Google Scholar 

  • Akke, M. and Palmer, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Allerhand, A. and Gutowsky, H.S. (1965) J. Chem. Phys., 42, 1587–1599.

    Google Scholar 

  • Arcus, V.A., Vuilleumier, S., Freund, S.M.V., Bycroft, M. and Fersht, A.R. (1995) J. Mol. Biol., 254, 305–321.

    Google Scholar 

  • Banci, L., Bertini, I., Cavazza, C., Felli, I.C. and Koulougliotis, D. (1998) Biochemistry, 37, 12320–12330.

    Google Scholar 

  • Bevington, P.R. and Robinson, D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences (2nd ed.), McGraw-Hill, New York, NY.

    Google Scholar 

  • Bloom, M., Reeves, L.W. and Wells, E.J. (1965) J. Chem. Phys., 42, 1615–1624.

    Google Scholar 

  • Broadhurst, R.W., Hardman, C.H., Thomas, J.O. and Laue, E.D. (1995) Biochemistry, 34, 16608–16617.

    Google Scholar 

  • Brüschweiler, R., Liao, X. and Wright, P.E. (1995) Science, 268, 886–888.

    Google Scholar 

  • Carr, H.Y. and Purcell, E.M. (1954) Phys. Rev., 94, 630–638.

    Google Scholar 

  • Clarke, J., Hamill, S.J. and Johnson, C.M. (1997) J. Mol. Biol., 270, 771–778.

    Google Scholar 

  • Constantine, K.L., Friedrichs, M.S., Wittekind, M., Jamil, H., Chu, C.-H., Parker, R.A., Goldfarb, V., Mueller, L. and Farmer, B.T. (1998) Biochemistry, 37, 7965–7980.

    Google Scholar 

  • Davis, D.G., Perlman, M.E. and London, R.E. (1994) J. Magn. Reson., B104, 266–275.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 552–559.

    Google Scholar 

  • Farrow, N.A., Zhang, O., Szabo, D., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162.

    Google Scholar 

  • Freund, S.M.V., Wong, K.-B. and Fersht, A.R. (1996) Proc. Natl. Acad. Sci. USA, 93, 10600–10603.

    Google Scholar 

  • Gagné, S.M., Tsuda, S., Spyracopoulos, L., Kay, L.E. and Sykes, B.D. (1998) J. Mol. Biol., 278, 667–686.

    Google Scholar 

  • Jin, D., Figueirido, F., Montelione, G.T. and Levy, R.M. (1997) J. Am. Chem. Soc., 119, 6923–6924.

    Google Scholar 

  • Kay, L.E. (1998) Nat. Struct. Biol., 5, 513–517.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kroenke, C.D., Loria, J.P., Lee, L.K., Rance, M. and Palmer, A.G. (1998) J. Am. Chem. Soc., 120, 7905–7915.

    Google Scholar 

  • Lane, A.N. and Lefévre, J.-F. (1994) Methods Enzymol., 239, 596–619.

    Google Scholar 

  • Leahy, D.J., Hendrickson, W.A., Aukhil, I. and Erickson, H.A. (1992) Science, 258, 987–991.

    Google Scholar 

  • Lee, L.K., Rance, M., Chazin, W.J. and Palmer, A.G. (1997) J. Biomol. NMR, 9, 287–298.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Luginbühl, P., Pervushin, K.V., Iwai, H. and Wüthrich, K. (1997) Biochemistry, 36, 7305–7312.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G. (1996) Biochemistry, 35, 16009–16023.

    Google Scholar 

  • McIntosh, P.B., Frenkiel, T.A., Wollborn, U., McCormick, J.E., Klempnauer, K.H., Feeney, J. and Carr, M.D. (1998) Biochemistry, 37, 9619–9629.

    Google Scholar 

  • Meekhof, A.E., Hamill, S.J., Arcus, V.L., Clarke, J. and Freund, S.M.V. (1998) J. Mol. Biol., 282, 181–194.

    Google Scholar 

  • Mulder, F.A.A., de Graff, R.A., Kaptein, R. and Boelens, R. (1998) J. Magn. Reson., 131, 351–357.

    Google Scholar 

  • Ogata, K., Kanei-Ishii, C., Sasaki, M., Hatanaka, H., Nagadoi, A., Enari, M., Nakamura, H., Nishimura, Y., Ishii, S. and Aarai, A. (1996) Nat. Struct. Biol., 3, 178–187.

    Google Scholar 

  • Orekhov, V.Y., Pervushin, K.V. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 887–896.

    Google Scholar 

  • Palmer, A.G. (1997) Curr. Opin. Struct. Biol., 7, 732–737.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.

    Google Scholar 

  • Phan, I.Q.H., Boyd, J. and Campbell, I.A. (1996) J. Biomol. NMR, 8, 369–378.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211–224.

    Google Scholar 

  • Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 151–164.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273–284.

    Google Scholar 

  • Vis, H., Vorgias, C.E., Wilson, K.S., Kaptein, R. and Boelens, R. (1998) J. Biomol. NMR, 11, 265–277.

    Google Scholar 

  • Whittaker, S.B.M., Boetzel, R., MacDonald, C., Lian, L., Pommer, A.J., Reilly, A., James, R., Kleanthous, C. and Moore, G.R. (1998) J. Biomol. NMR, 12, 145–159.

    Google Scholar 

  • Wong, K.-B., Freund, S.M.V. and Fersht, A.R. (1996) J. Mol. Biol., 259, 805–818.

    Google Scholar 

  • Wyss, D., Dayie, K.T. and Wagner, G. (1997) Protein Sci., 6, 534–542.

    Google Scholar 

  • Zinn-Justin, S., Berthault, P., Guenneugues, M. and Desvaux, H. (1997) J. Biomol. NMR, 10, 363–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meekhof, A.E., Freund, S.M. Separating the contributions to 15N transverse relaxation in a fibronectin type III domain. J Biomol NMR 14, 13–22 (1999). https://doi.org/10.1023/A:1008371332130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008371332130

Navigation