Skip to main content

Advertisement

Log in

The role of scintigraphic techniques in the evaluation of functional results of coronary bypass grafting and percutaneous transluminal coronary angioplasty

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

Scintigraphic techniques can be used first, to guide appropriate referral for interventional procedures, and second to predict the effect of revascularization on regional perfusion and functionprior to the intervention, thereby being able to assess efficacy of revascularization and to assess whether ischemia is the origin of recurrence of symptoms. Of increasing importance is the ability of nuclear techniques to identify those myocardial regions with abnormal function which might benefit from revascularization by showing improvement in regional wall motion. Positron emission tomography is considered to be the gold standard to assess regional myocardial perfusion and metabolism. The introduction of the reinjection technique makes201Tl-scintigraphy the method of choice to detect jeopardized myocardium and to guide appropriate referral for revascularization procedures in those institutes where PET is not available. Even when the costly PET-instrumentation is available, cost-benefit analysis is indicated to assess the additional value of PET compared with201Tl reinjection imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serruys PW, Luijten HE, Beatt KJ, Geuskens R, de Feyter PJ, van den Brand M, et al. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1,2,3, and 4 months. Circulation 1988; 77: 361–371.

    Google Scholar 

  2. Chatterjee K, Swan HJC, Parmley WW, Sustaita H, Marcus H and Matloff J. Influence of direct myocardial revascularization on left ventricular asynergy and function in patients with coronary heart disease with and without previous myocardial infarction. Circulation 1973; 47: 276–286.

    Google Scholar 

  3. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985; 72: V-123–135.

    Google Scholar 

  4. Braunwald E and Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146–1149.

    Google Scholar 

  5. Braunwald E and Rutherford JD. Reversible ischemie left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol 1986; 8: 1467.

    Google Scholar 

  6. Nielsen AP, Morris KG, Murdock R, Bruno FP and Cobb FR. Linear relationship between the distribution of thallium-201 and blood flow in ischemie and nonischemic myocardium during exercise. Circulation 1980; 61: 797–801.

    Google Scholar 

  7. Melin JA and Becker LC. Quantitative relationship between global left ventricular thallium uptake and blood flow: effects of propranolol, ouabain, dipyridamole, and coronary artery occlusion. J Nucl Med 1986; 27: 641–652.

    Google Scholar 

  8. Diamond GA. How accurate is SPECT thallium scintigraphy? (editorial). J Am Coll Cardiol 1990; 16: 1017–1021.

    Google Scholar 

  9. Beller GA and Gibson RS. Sensitivity, specificity, and prognostic significance of noninvasive testing for occult or known coronary disease. Prog Cardiovasc Dis 1987; 29: 241–70.

    Google Scholar 

  10. Wackers FJ, Fetterman R, Mattera JA and Clements JP. Quantitative planar thallium-201 stress scintigraphy: a critical evaluation of the method. Semin Nucl Med 1985; 15: 46–66.

    Google Scholar 

  11. Fintel DJ, Links JM, Brinker JA, Frank TL, Parker M and Becker LC. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol 1989; 13: 600–612.

    Google Scholar 

  12. Zijlstra F, Fioretti P, Reiber JH and Serruys PW. Which cineangiographically assessed anatomic variable correlates best with functional measurements of stenosis severity? A comparison of quantitative analysis of the coronary cineangiogram with measured coronary flow reserve and exercise/redistribution thallium-201 scintigraphy. J Am Coll Cardiol 1988; 12: 686–691.

    Google Scholar 

  13. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE and Beller GA. Differentiation of transient ischemie from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977; 55: 294–302.

    Google Scholar 

  14. Cloninger KG, DePuey EG, Garcia EV, Roubin GS, Robbins WL, Nody A, et al. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: an overestimation of myocardial scarring. J Am Coll Cardiol 1988; 12: 955–963.

    Google Scholar 

  15. Kiat H, Berman DS, Maddahi J, De Yang L, Van Train K, Rozanski A, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988; 12: 1456–1463.

    Google Scholar 

  16. Dilsizian V, Rocco TP, Freedman NM, Leon MB and Bonow RO. Enhanced detection of ischemie but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990; 19; 323: 141–146.

    Google Scholar 

  17. Kuijper AFM, Vliegen HW, van der Wall EE, Oosterhuis WP, Zwinderman AH, van Eck-Smit BLF, et al. The clinical impact of thallium-201 reinjection scintigraphy for detection of myocardial viability. Eur J Nucl Med 1992; 19: 783–789.

    Google Scholar 

  18. Bonow RO and Dilsizian V. Thallium 201 for assessment of myocardial viability. Semin Nucl Med 1991; 21: 230–241.

    Google Scholar 

  19. Moore CA, Cannon J, Watson DD, Kaul S and Beller GA. Thallium 201 kinetics in stunned myocardium characterized by severe postischemic systolic dysfunction. Circulation 1990; 81: 1622–1632.

    Google Scholar 

  20. van Eck-Smit BLF, van der Wall EE, Kuijper AFM, Zwinderman AH and Pauwels EKJ. Immediate Tl-201 reinjection following stress imaging: a novel time-saving approach for detection of myocardial viability. J Nucl Med 1993; 34: 737–743.

    Google Scholar 

  21. Wackers FJ, Lie KI, Liem KL, Busemann Sokole E, Samson G, van der School JB, et al. Thallium-201 scintigraphy in unstable angina pectoris. Circulation 1978; 57: 738–742.

    Google Scholar 

  22. Berger BC, Watson DD, Burwell LR, Crosby IK, Wellons HA, Teates CD, et al. Redistribution of thallium at rest in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation 1979; 60: 1114–1125.

    Google Scholar 

  23. Blood DK, McCarthy DM, Sciacca RR and Cannon PJ. Comparison of single-dose and double-dose thallium-201 myocardial perfusion scintigraphy for the detection of coronary artery disease and prior myocardial infarction. Circulation 1978; 58: 777–788.

    Google Scholar 

  24. Maddahi J, Kiat H, Van Train KF, Prigent F, Friedman J, Garcia EV, et al. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease. Am J Cardiol 1990; 66: 55E-62E.

    Google Scholar 

  25. Kiat H, Maddahi J, Roy LT, Van Train K, Friedman J, Resser K, et al. Comparison of technetium 99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989; 117: 1–11.

    Google Scholar 

  26. Verzijlbergen JF, Cramer MJ, Niemeyer MG, Ascoop CA, van der Wall EE and Pauwels EKJ. 99Tcm-SESTAMIBI for planar myocardial perfusion imaging; not as ideal as the physical properties. Nucl Med Commun 1991; 12: 381–391.

    Google Scholar 

  27. Cuocolo A, Pace L, Ricciardelli B, Chiariello M, Trimarco B and Salvatore M. Identification of viable myocardium in patients with chronic coronary artery disease: comparison of thallium-201 scintigraphy with reinjection and technetium-99m-methoxyisobutyl Isonitrile. J Nucl Med 1992; 33: 505–511.

    Google Scholar 

  28. Schwaiger M and Hutchins GD. Evaluation of coronary artery disease with positron emission tomography. Semin Nucl Med 1992; 22: 210–223.

    Google Scholar 

  29. Bonow RO, Dilsizian V, Cuocolo A and Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991; 83: 26–37.

    Google Scholar 

  30. Brunken RC, Mody FV, Hawkins RA, Nienaber C, Phelps ME and Schelbert HR. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography 201-T1 defects. Circulation 1992; 86: 1357–1369.

    Google Scholar 

  31. Tamaki N, Ohtani H, Yamashita K, Magata Y, Yonekura Y, Nohara R, et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991; 32: 673–678.

    Google Scholar 

  32. Verani MS, Marcus ML, Spoto G, Rossi NP, Ehrhardt JC and Razzak M. Thallium-201 myocardial perfusion scintigrams in the evaluation of aorto-coronary saphenous bypass surgery. J Nucl Med 1978; 19: 765–772.

    Google Scholar 

  33. Greenberg BH, Hart R, Botvinick EH, Werner JA, Brundage BH, Shames DM, et al. Thalllium-201 myocardial perfusion scintigraphy to evaluate patients after coronary bypass surgery. Am J Cardiol 1978; 42: 167–176.

    Google Scholar 

  34. Hirzel HO, Nuesch K, Sialer G, Horst W and Krayenbuhl HP. Thallium-201 exercise myocardial imaging to evaluate myocardial perfusion after coronary bypass surgery. Br Heart J 1980; 43: 426–435.

    Google Scholar 

  35. Robinson TS, Williams BT, Webb-Peploe MM, Crowther A and Coltart DJ. Thallium-201 myocardial imaging and assessment of results of aorto-coronary bypass grafting. Br Heart J 1979; 42: 455–462.

    Google Scholar 

  36. Ritchie JL, Narahara KA, Trobaugh GB, Williams DL and Hamilton GW. Thallium-201 myocardial imaging before and after coronary revascularization: assessment of regional myocardial blood flow and graft patency. Circulation 1977; 56: 830–836.

    Google Scholar 

  37. Sbarbaro JA, Karunaratne H, Cantez S, Harper PV and Resnekov L. Thallium-201 imaging and assessment of aortocoronary bypass graft patency. Br Heart J 1979; 42: 553–561.

    Google Scholar 

  38. Pfisterer M, Burkart F, Jockers G, Meyer B, Regenass S, Burckhardt D, et al. Trial of low-dose aspirin plus dipyridamole versus anticoagulants for prevention of aortocoronary vein graft occlusion. Lancet 1989; 2: 1–7.

    Google Scholar 

  39. Gruentzig AR, Senning A and Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis. N Engl J Med 1979; 301: 61–68.

    Google Scholar 

  40. Hirzel H, Nuesch K, Gruentzig A and Luetolf UM. Shortand long-term changes in myocardial perfusion after percutaneous transluminal coronary angioplasty assessed by thallium-201 exercise scintigraphy. Circulation 1981; 63: 1001–1007.

    Google Scholar 

  41. Scholl JM, Chaitman BR, David PR, Dupras G, Brevers G, Val PG, et al. Exercise electrocardiography and myocardial scintigraphy in the serial evaluation of the results of percuteneous transluminal coronary angioplasty. Circulation 1982; 66: 380–390.

    Google Scholar 

  42. Lim YL, Okada RD, Chester DA, Block PC, Boucher CA and Pohost GM. A new approach to quantitation of exercise thallium-201 scintigraphy before and after an intervention: application to define the impact of coronary angioplasty on regional myocardial perfusion. Am Heart J 1984; 108: 917–925.

    Google Scholar 

  43. Miller DD, Liu P, Strauss HW, Block PC, Okada RD and Boucher CA. Prognostic value of computer-quantitated exercise thallium imaging early after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1987; 10: 275–283.

    Google Scholar 

  44. Reed DC, Belter GA, Nygaard TW, Tedesco C, Watson DD and Burwell LR. The clinical efficacy and scintigraphic evaluation of post-coronary bypass patients undergoing percutaneous transluminal coronary angioplasty for recurrent angina pectoris. Am Heart J 1989; 117: 60–71.

    Google Scholar 

  45. Fioretti PM, Pozzoli MM, Ilmer B, Salustri A, Cornel JH, Reijs AE, et al. Exercise echocardiography versus thallium-201 SPECT for assessing patients before and after PTCA. Eur Heart J 1992; 13: 213–219.

    Google Scholar 

  46. Gibson RS, Watson DD, Taylor GJ, Crosby IK, Wellons HL, Holt ND, et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983; 1: 804–815.

    Google Scholar 

  47. Fioretti P, Reijs AE, Neumann D, Taams M, Kooij PP, Bos E, et al. Improvement in transient and “persistent” perfusion defects on early and late post-exercise thallium-201 tomograms after coronary artery bypass grafting. Eur Heart J 1988; 9: 1332–1338.

    Google Scholar 

  48. Iskandrian AS, Hakki A, Kane SA, Goel IP, Mundth ED and Segal BL. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary arterial bypass grafting. Am J Cardiol 1983; 51: 1312–1316.

    Google Scholar 

  49. Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, et al. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: does it represent scar or ischemia? Am Heart J 1985; 110: 996–1001.

    Google Scholar 

  50. Okada RD, Lim YL, Boucher CA, Pohost GM, Chester DA and Block PC. Clinical, angiographie, hemodynamic, perfusional and functional changes after one-vessel left anterior descending coronary angioplasty. Am J Cardiol 1985; 55: 347–356.

    Google Scholar 

  51. Ohtani H, Tamaki N, Yonekura Y, Mohiuddin IH, Hirata K, Ban T, et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990; 66: 394–399.

    Google Scholar 

  52. Kuijper AFM, Niemeyer MG, D'haene EG, van der Wall EE and Pauwels EKJ. Stress-reinjection Thallium-201 scintigraphy: prediction of effect of coronary artery bypass grafting on regional myocardial perfusion (abstract). J Am Coll Cardiol 1993; 21: 389A.

    Google Scholar 

  53. Wijns W, Serruys PW, Reiber JH, de Feyter PJ, van den Brand M, Simoons ML, et al. Early detection of restenosis after successful percutaneous transluminal coronary angioplasty by exercise-redistribution thallium scintigraphy. Am J Cardiol 1985; 55: 357–361.

    Google Scholar 

  54. Breisblatt WM, Weiland FL and Spaccavento LJ. Stress thallium-201 imaging after coronary angioplasty predicts restenosis and recurrent symptoms. J Am Coll Cardiol 1988; 12: 1199–1204.

    Google Scholar 

  55. Jain A, Mahmarian JJ, Borges Neto S, Johnston DL, Cashion WR, Lewis JM, et al. Clinical significance of perfusion defects by thallium-201 single photon emission tomography following oral dipyridamole early after coronary angioplasty. J Am Coll Cardiol 1988; 11: 970–976.

    Google Scholar 

  56. Stuckey TD, Burwell LR, Nygaard TW, Gibson RS, Watson DD and Belter GA. Quantitative exercise thallium-201 scintigraphy for predicting angina recurrence after percutaneous transluminal coronary angioplasty. Am J Cardiol 1989; 63: 517–521.

    Google Scholar 

  57. Hecht HS, Shaw RE, Bruce TR, Ryan C, Stertzer SH and Myler RK. Usefulness of tomographic thallium-201 imaging for detection of restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1990; 66: 1314–1318.

    Google Scholar 

  58. Kalff V, Kelly MJ, Soward A, Harper RW, Currie PJ, Lim YL, et al. Assessment of hemodynamic significance of isolated stenoses of the left anterior descending coronary artery using thallium-201 myocardial scintigraphy. Am J Cardiol 1985; 55: 342–346.

    Google Scholar 

  59. Breisblatt WM, Barnes JV, Weiland F and Spaccavento LJ. Incomplete revascularization in multivessel percutaneous transluminal coronary angioplasty: the role for stress thallium-201 imaging. J Am Coll Cardiol 1988; 11: 1183–1190.

    Google Scholar 

  60. Pfisterer M, Muller Brand J, Spring P, Bassignana V and Kiowski W. Assessment of the extent of jeopardized myocardium during acute coronary artery occlusion followed by reperfusion in man using technetium-99m isonitrile imaging. Am Heart J 1991; 122: 7–12.

    Google Scholar 

  61. Kent KM, Borer JS, Green MV, Bacharach SL, Mclntosh CL, Conkle DM, et al. Effects of coronary-artery bypass on global and regional left ventricular function during exercise. N Engl J Med 1978; 298: 1434–1439.

    Google Scholar 

  62. Sigwart U, Grbic M, Essinger A, Bischof-Delaloye A, Sadeghi H and Rivier JL. Improvement of left ventricular function after percutaneous transluminal coronary angioplasty. Am J Cardiol 1982; 49: 651–657.

    Google Scholar 

  63. Bonow RO, Kent KM, Rosing DR, Lipson LC, Bacharach SL, Green MV, et al. Improved left ventricular diastolic filling in patients with coronary artery disease after percutaneous transluminal coronary angiography. Circulation 1982; 66: 1159–1167.

    Google Scholar 

  64. Rozanski A, Berman DS, Gray R, Diamond GA, Raymond M, Prause J, et al. Preoperative prediction of reversible myocardial asynergy by postexercise radionuclide ventriculography. N Engl J Med 1982; 307: 212–216.

    Google Scholar 

  65. Rozanski A, Berman DS, Gray R, Levy R, Raymond M, Maddahi J, et al. Use of thallium-201 redistribution scintigraphy in the preoperative differentiation of reversible and nonreversible myocardial asynergy. Circulation 1981; 64: 936–944.

    Google Scholar 

  66. Mori T, Minamiji K, Kurogane H, Ogawa K and Yoshida Y. Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 1991; 32: 1718–1724.

    Google Scholar 

  67. Brundage BH, Massie BM and Botvinick EH. Improved regional ventricular function after succesful surgical revascularization. J Am Coll Cardiol 1984; 3: 902–908.

    Google Scholar 

  68. Dilsizian V, Cannon RO, Tracy CM, Mclntosh CL, Clark RE and Bonow RO. Enhanced regional left ventricular function after distant coronary bypass by means of improved collateral blood flow. J Am Coll Cardiol 1989; 14: 312–318.

    Google Scholar 

  69. DePuey EG, Leatherman LL, Leachman RD, Dear WE, Massin EK, Mathur VS, et al. Restenosis after transluminal coronary angioplasty detected with exercise-gated radionuclide ventriculography. J Am Coll Cardiol 1984; 4: 1103–1113.

    Google Scholar 

  70. O'Keefe JH, Jr., Lapeyre AC, Holmes DRJr. and Gibbons RJ. Usefulness of early radionuclide angiography for identifying low-risk patients for late restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1988; 61: 51–54.

    Google Scholar 

  71. Marzullo P, Sambuceti G and Parodi O. The role of sestamibi scintigraphy in the radioisotopic assessment of myocardial viability. J Nucl Med 1992; 33: 1925–1930.

    Google Scholar 

  72. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion predicted by positron tomography. N Engl J Med 1986; 314: 884–888.

    Google Scholar 

  73. Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989; 64: 860–865.

    Google Scholar 

  74. Marwick TH, Maclntyre WJ, Lafont A, Nemec JJ and Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularisation. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85: 1347–1353.

    Google Scholar 

  75. Lucignani G, Paolini G, Landoni C, Zuccari M, Paganelli G, Galli L, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Bur J Nucl Med 1992; 19: 874–881.

    Google Scholar 

  76. de Silva R, Yamatoto Y, Rhodes CG, Lida H, Nihoyannopoulos P, Davies GJ, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 1992; 86: 1738–1742.

    Google Scholar 

  77. Nienaber CA, Brunken RC, Sherman CT, Yeatman LA, Gambhir SS, Krivokapich J, et al. Metabolic and functional recovery of ischemie human myocardium after coronary angioplasty. J Am Coll Cardiol 1991; 18: 966–978.

    Google Scholar 

  78. Manyari DE, Knudtson M, Kloiber R and Roth D. Sequential thallium-201 myocardial perfusion studies after successful percutaneous transluminal coronary artery angioplasty: delayed resolution of exercise-induced scintigraphic abnormalities. Circulation 1988; 77: 86–95.

    Google Scholar 

  79. Montalescot G, Faraggi M, Drobinski G, Messian O, Evans J, Grosgogeat Y, et al. Myocardial viability in patients with Q wave myocardial infarction and no residual ischemia. Circulation 1992; 86: 47–55.

    Google Scholar 

  80. Walsh MN, Geltman EM, Steele RL, Kenzora JL, Ludbrook PA, Sobel BE, et al. Augmented myocardial perfusion reserve after coronary angioplasty quantified by positron emission tomography with H2(15)O. J Am Coll Cardiol 1990;15: 119–127.

    Google Scholar 

  81. Weiss RG, Bottomley PA, Hardy CJ and Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 1990; 323: 1593–1600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuijper, A.P.M., van Eck-Smit, B.L.F., Niemeyer, M.G. et al. The role of scintigraphic techniques in the evaluation of functional results of coronary bypass grafting and percutaneous transluminal coronary angioplasty. Int J Cardiac Imag 9 (Suppl 1), 49–58 (1993). https://doi.org/10.1007/BF01143146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01143146

Key words

Navigation