Skip to main content
Log in

Morphological aspects of fatigue crack propagation Part I—Computational procedure

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In the present paper a simulation method is proposed for the evaluation of paths and lives of fatigue cracks. The simulation is based on an incremental crack extension procedure. At each increment the stress analysis ahead of a crack tip is carried out by the finite element method, and the next incremental crack-growth path is predicted by the first order perturbation method with the use of the local symmetry criterion. From the computational viewpoint, the step-by-step rezoning of finite element mesh subdivision is one of the most difficult processes of the simulation procedure. In order to overcome this difficulty, we shall use the modified quadtree method as an automatic mesh generation technique. Considerations are made for the proper mesh arrangement in the vicinity of a crack tip, where a special fine mesh pattern is embedded so that mixed mode stress intensity factors and the higher order coefficients of the near tip stress field parameters can accurately be obtained. Using the proposed method, we simulate the branched and curved fatigue crack growth in three-point-bending specimens. They show fairly good agreement with the experimental results. The simulation procedure is also applied to biaxially loaded cruciform joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M., Higuchi, M., Kawahara, K., Kondo and M., Kurihara. Journal of the Society of Naval Architects of Japan 139 (1976) 221–226 (in Japanese).

    Google Scholar 

  2. A.R., Ingraffea and F.E., Heuze. International Journal of Numerical and Analytical Methods in Geomechanics, 4 (1980) 25–43.

    Article  MATH  ADS  Google Scholar 

  3. Y., Sumi. Theoretical and Applied Fracture Mechanics 4 (1985) 149–156.

    Article  Google Scholar 

  4. Y., Sumi. International Journal of Fracture 44 (1990) 189–207.

    Google Scholar 

  5. Y. Murakami. Proceedings of the International Conference on Analytical and Experimental Fracture Mechanics, Rome (1980) 871–882.

  6. H., Horii and S., Nemat-Nasser. Journal of Geophysical Research 90-B4 (1985) 3105–3124.

    Article  ADS  Google Scholar 

  7. A., Portela and M.H., Aliabadi. Crack Growth Analysis Using Boundary Elements, Computational Mechanics Publisher, Southampton, UK (1992)

    Google Scholar 

  8. Y., Yamamoto and N., Tokuda. International Journal for Numerical Methods in Engineering 6 (1973) 427–439.

    Article  MATH  Google Scholar 

  9. Y., Sumi and Y., Yamamoto. Discretization Methods in Structural Mechanics, Springer, Berlin (1990) 243–252.

    Google Scholar 

  10. Y., Sumi, S., Nemat-Nasser and L.M., Keer. International Journal of Fracture 21 (1983) 67–79; Erratum International Journal of Fracture 24 (1984) 159.

    Article  Google Scholar 

  11. Y., Sumi. Engineering Fracture Mechanics 24 (1986) 479–481.

    Article  Google Scholar 

  12. M.A. Yerry and M.S. Shephard. IEEE Computer Graphics and Applications Jan./Feb. (1983) 39–46.

  13. F., Erdogan and G.C., Sih. Journal of Basic Engineering 85 (1963) 519–527.

    Google Scholar 

  14. G.C., Sih. Mechanics of Fracture, 1, Noordhoff, Leyden (1972).

    Google Scholar 

  15. C.H., Wu. Journal of Applied Mechanics 45 (1978) 553–558.

    MATH  Google Scholar 

  16. N.V., Banichuk. Mekhanika Tverdogo Tela (7) 2 (1970) 130–137 (in Russian).

    Google Scholar 

  17. R.V., Goldstein and R.L., Salganik. International Journal of Fracture 10 (1974) 507–527.

    Article  Google Scholar 

  18. H. Kitagawa, R. Yuuki, K. Tohgo and M. Tanabe. Multiaxial Fatigue, ASTM STP 853 (1985) 164–183.

  19. S., Nemat-Nasser and H., Horii. Journal of Geophysical Research (87) B8 (1982) 6805–6821.

    ADS  Google Scholar 

  20. H.F., Bueckner. Mechanics of Fracture, 1, Noordhoff, Leyden (1972) 239–314.

    Google Scholar 

  21. M.A., Amestoy and J.B., Leblond. International Journal of Solids and Structures 29 (1992) 465–501.

    Article  MATH  MathSciNet  Google Scholar 

  22. E.W. Smith and K.J. Pascoe. Multiaxial Fatigue, ASTM STP 853 (1985) 111–134.

  23. R.E. Link. Advances in Multiaxial Fatigue, ASTM STP 1191 (1993) 345–358.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumi, Y., Yang, C. & Hayashi, S. Morphological aspects of fatigue crack propagation Part I—Computational procedure. Int J Fract 82, 205–220 (1996). https://doi.org/10.1007/BF00013158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013158

Keywords

Navigation