Skip to main content

Advertisement

Log in

Genetic engineering of grain and pasture legumes for improved nutritive value

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This review describes work aimed at the improvement of the nutritive value of grain and forage legumes using gene transfer techniques. Two traits which are amenable to manipulation by genetic engineering have been identified. These are plant protein quality and lignin content. In order to increase the quality of protein provided by the legume grains peas and lupins, we are attempting to introduce into these species chimeric genes encoding a sunflower seed protein rich in the sulphur-containing amino acids methionine and cysteine. These genes are designed to be expressed only in developing seeds of transgenic host plants. Chimeric genes incorporating a similar protein-coding region, but different transcriptional controls, are being introduced into the forage legumes lucerne and subterranean clover. In this case the genes are highly expressed in the leaves of transformed plants, and modifications have been made to the sunflower seed protein-coding sequences in order to increase the stability of the resultant protein in leaf tissue. Another approach to increasing plant nutritive value is represented by attempts to reduce the content of indigestible lignin in lucerne.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenbach, S. B., K. W. Pearson, G. Meeker, L. C. Starci & S. S. M. Sun, 1989. Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol. Biol. 13: 513–522.

    PubMed  Google Scholar 

  • Altenbach, S. B., C-C. Kuo, L. C. Staraci, K. W. Pearson, C. Wainwright, A. Georgescu & J. Townsend, 1992. Accumulation of a brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol. Biol. 18: 235–245.

    PubMed  Google Scholar 

  • Barry, T. N., 1981. Protein metabolism in growing lambs fed on fresh ryegrass (Lolium perenne)-white clover (Trifolium repens) pasture ad lib. British J. Nutrition 46: 521–532.

    Google Scholar 

  • Beachy, R. N., S. Loesch-Fries & N. E. Tumer, 1990. Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28: 451–474.

    Google Scholar 

  • Beever, D. E. & R. C. Siddons, 1986. Digestion and metabolism in the grazing ruminant, pp. 479–496 in Control of digestion and metabolism in ruminants, edited by L. P. Milligan, W. L. Grovum and A. Dobson. Prentice Hall, New Jersey.

    Google Scholar 

  • Benfey, P. N., L. Ren & N-H. Chua, 1989. The CaMV 35S enhancer contains at least two domains which can confer different development and tissue-specific expression patterns. EMBO J. 8: 2195–2202.

    Google Scholar 

  • Bennetzen, J. L. & B. D. Hall, 1982. Codon selection in yeast. J. Biol. Chem. 257: 3026–3031.

    PubMed  Google Scholar 

  • Boorman, K. N., 1980. Dietary constraints on nitrogen retention, pp. 147–167 in Protein deposition in animals, edited by P. J. Buttery and D. B. Lindsay. Butterworths, London.

    Google Scholar 

  • Braun, C. J. & C. L. Hemenway, 1992. Expression of aminoterminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell 4: 735–744.

    PubMed  Google Scholar 

  • Bucholtz, D. L., R. P. Cantrell, J. D. Axtell & V. L. Lechtenberg, 1980. Lignin biochemistry of normal and brown midrib mutant sorghum. J. Ag. Food Chem. 28: 1239–1241.

    Google Scholar 

  • Campbell, W. H. & G. Gowri, 1990. Codon usage in higher plants, green algae and cyanobacteria. Plant Physiol. 92: 1–11.

    Google Scholar 

  • Cherney, J. H., J. D. Axtell, M. M. Hassen & K. S. Anliker, 1988. Forage quality characterization of a chemically induced brown-midrib mutant in pearl millet. Crop Sc. 28: 783–787.

    Google Scholar 

  • Choi, T., M. Huang, C. Gorman & R. Jaenisch, 1991. A generic intron increases gene expression in transgenic mice. Mol. Cell Biol. 11: 3070–3074.

    PubMed  Google Scholar 

  • Christian, K. R., D. B. Jones & M. Freer, 1970. Digestibility and chemical composition of fractions of lucerne during spring and summer. J. Ag. Sc. Camb. 75: 213–222.

    Google Scholar 

  • Dean, C., M. Favreau, P. Dunsmuir & J. Bedbrook, 1987. Confirmation of the expression levels of the Petunia (Mitchell) rbcS genes. Nucl. Acids Res. 15: 4655–4668.

    PubMed  Google Scholar 

  • Dove, H. & G. E. Robards, 1974. Effects of abomasal infusions of methionine, casein, and starch plus methionine on the wool production of merino wethers fed on lucerne or wheaten chaff. Aust. J. Agric. Res. 25: 945–956.

    Google Scholar 

  • Downes, A. M., P. J. Reis, L. F. Sharry & D. A. Tunks, 1970. Metabolic fate of parenterally administered sulphur-containing amino acids in sheep and effects on growth and composition of wool. Aust. J. Biol. Sci. 23: 1077–1088.

    PubMed  Google Scholar 

  • Eckes, P., P. Schmitt, D. Winfried & F. Wengenmayer, 1989. Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol. Gen. Genet. 217: 263–268.

    PubMed  Google Scholar 

  • El-Tekriti, R. A., V. L. Lechtenberg, L. F. Bauman & V. F. Colenbrander, 1976. Structural composition and in vitro dry matter disappearance of brown midrib corn residue. Crop Sc. 16: 387–389.

    Google Scholar 

  • Ferguson, K. A., J. A. Hemsley & P. J. Reis, 1967. Nutrition and wool growth. The effect of protecting dietary protein from microbial degradation in the rumen. Aust. J. Sc. 30: 215–222.

    Google Scholar 

  • Fisher, C., 1980. Protein deposition in poultry, pp. 251–271 in Protein deposition in animals, edited by P. J. Buttery and D. B. Lindsay. Butterworths, London.

    Google Scholar 

  • Flores, J. F., T. H. Stobbs & D. J. Minson, 1979. The influence of the legume Leucaena leucocephala and formaldehydetreated casein on the production and composition of milk from grazing cows. Aust. J. Sc. 92: 351–360.

    Google Scholar 

  • Golemboski, D. B., G. P. Lomonossoff & M. Zaitlin, 1990. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87: 6311–6315.

    PubMed  Google Scholar 

  • Grand, C., P. Parmentier, A. Boudet & A. M. Boudet, 1985. Comparison of lignins and enzymes involved in lignification in normal and brown midrib (bm3) mutant corn seedlings. Physiol. Veg. 23: 905–911.

    Google Scholar 

  • Hartley, R. D. & E. C. Jones, 1978. Phenolic components and degradability of the cell walls of the brown midrib mutant, bm3, of Zea mays. J. Sci. Food Agric. 29: 777–789.

    Google Scholar 

  • Higgins, T. J. V., 1984. Synthesis and regulation of major proteins in seeds. Annu. Rev. Plant Phys. 35: 191–221.

    Google Scholar 

  • Higgins, T. J. V., E. J. Newbigin, D. Spencer, D. J. Llewellyn & S. Craig, 1988. The sequence of a pea vicilin gene and its expression in transgenic tobacco plants. Plant Mol. Biol. 11: 683–695.

    Google Scholar 

  • Higgins, T. J. V. & D. Spencer, 1991. The expression of chimeric cauliflower mosaic virus (CaMV-35S)-pea vicilin gene in tobacco. Plant Sci. 74: 89–98.

    Google Scholar 

  • Hogan, J. P. & R. H. Weston, 1981. Laboratory methods for protein evaluation, pp. 75–88 in Forage evaluation: concepts and techniques, edited by J. L. Wheeler and R. D. Mochrie. CSIRO and The American Forage and Grasslands Council, Australia.

    Google Scholar 

  • Hooykaas, P. J. J. & R. A. Schilperoort, 1992. Agrobacterium and plant genetic engineering. Plant Mol. Biol. 19: 15–38.

    PubMed  Google Scholar 

  • Jefferson, R. A., T. A. Kavanagh & M. W. Bevan, 1987. GUS fusions: B-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6: 3901–3907.

    PubMed  Google Scholar 

  • Jobling, S. A. & L. Gehrke, 1987. Enhanced translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325: 622–625.

    PubMed  Google Scholar 

  • Jones, J. D. G., P. Dunsmuir & J. Bedbrook, 1985. High level expression of introduced chimeric genes in regenerated transformed plants. The EMBO Journal 4: 2411–2418.

    Google Scholar 

  • Jones, J. D. G., C. Dean, D. Gidoni, D. Gilbert, D. Bond-Nutter, R. Lee, J. Bedbrook & P. Dunsmuir, 1988. Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Mol. Gen. Genet. 212: 536–542.

    Google Scholar 

  • Kennedy, P. M. & L. P. Milligan, 1978. Quantitative aspects of the transformations of sulphur in sheep. British J. Nutrition 39: 65–84.

    Google Scholar 

  • Kortt, A. A., J. B. Caldwell, G. G. Lilley & T. J. V. Higgins, 1991. Amino acid and cDNA sequence of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). Eur. J. Biochem. 195: 329–334.

    PubMed  Google Scholar 

  • Kuc, J. & O. E. Nelson, 1964. The abnormal lignins produced by the brown-midrib mutants of maize. I. The brown-midrib-1 mutant. Arch. Biochem. Biophys. 105: 103–113.

    PubMed  Google Scholar 

  • Lewis, M. J., D. J. Sweet & H. R. B. Pelham, 1990. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61: 1359–1363.

    PubMed  Google Scholar 

  • Luehrsen, K. R. & V. Walbot, 1991. Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. & Gen. Genet. 225: 81–93.

    Google Scholar 

  • MacRae, J. C. & M. J. Ulyatt, 1974. Quantitative digestion of fresh herbage by sheep. II The sites of digestion of some nitrogenous constituents. J. Ag. Sc. Camb. 82: 309–319.

    Google Scholar 

  • Mangan, J. L., 1972. Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids. British J. Nutrition 27: 261–283.

    Google Scholar 

  • Matile, P., 1978. Biochemistry and function of vacuoles. Annu. Rev. Plant Physiol. 29: 193–213.

    Google Scholar 

  • McNabb, W. C., 1990. Digestion and metabolism of sulphur containing amino acids in sheep fed fresh forage diets. Ph.D. Thesis, Massey University, Palmerston North, New Zealand.

    Google Scholar 

  • McReynolds, L., B. W. O'Malley, A. D. Nisbet, A. D. Fothergill, D. Givol, S. Fields, M. Robertson & G. G. Brownlee, 1978. Sequence of chicken ovalbumin mRNA. Nature 273: 723–728.

    PubMed  Google Scholar 

  • Minson, D. J., 1990. Forage in Ruminant Nutrition. Academic Press, San Diego.

    Google Scholar 

  • Morelli, G., F. Nagy, R. T. Fraley, S. G. Rogers & N. H. Chua, 1985. A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose-1,5-bisphosphate carboxylase small subunit of pea. Nature 315: 200–204.

    Google Scholar 

  • Munro, S. & H. R. B. Pelham, 1987. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907.

    PubMed  Google Scholar 

  • Murray, E. E., J. Lotzer & M. Eberle, 1989. Codon usage in plant genes. Nucl. Acids Res. 17: 477–498.

    PubMed  Google Scholar 

  • Nagy, F., G. Morelli, R. T. Fraley, S. G. Rogers & N. H. Chua, 1985. Photoregulated expression of a pea rbcS gene in leaves of transgenic plants. EMBO J. 4: 3063–3068.

    Google Scholar 

  • Namba, S., K. Ling, C. Gonsalves, D. Gonsalves & J. L. Slightom, 1991. Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 10: 181–188.

    Google Scholar 

  • Nugent, J. H. A., W. T. Jones, D. J. Jordan & J. L. Mangan, 1983. Rates of proteolysis in the rumen of the soluble proteins casein, Fraction 1 Leaf protein, bovien serum albumin and bovine submaxillary mucoprotein. British J. Nutrition 50: 357–368.

    Google Scholar 

  • Nugent, J. H. A. & J. L. Mangan, 1981. Characteristics of the rumen proteolysis of Fraction 1 Leaf protein from lucerne. British J. Nutrition 46: 39–58.

    Google Scholar 

  • Palmiter, R. D., E. P. Sandgren, M. R. Avarbock, D. D. Allen & R. L. Brinster, 1991. Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. USA 88: 478–482.

    PubMed  Google Scholar 

  • Perlak, F. J., R. W. Deaton, T. A. Armstrong, R. L. Fuchs, S. R. Sims, J. T. Greenplate & D. A. Fischhoff, 1990. Insect resistant cotton plants. Bio/tech. 8: 939–943.

    Google Scholar 

  • Perlak, F. J., R. L. Fuchs, D. A. Dean, S. L. McPherson & D. A. Fischhoff, 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324–3328.

    PubMed  Google Scholar 

  • Porter, K. S., J. D. Axtell, V. L. Lechtenberg & V. J. Colenbrander, 1978. Phenotype, fibre composition and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sc. 18: 205–208.

    Google Scholar 

  • Poulsen, C., R. Fluhr, J. M. Kauffman, M. Boutry & N. H. Chua, 1986. Characterization of an rbcS gene from Nicotiana plumbaginifolia and expression of an rbcS-CAT chimeric gene in homologous and heterologous nuclear background. Mol. Gen. Genet. 205: 193–200.

    Google Scholar 

  • Radcliffe, B. C., P. I. Hynd, N. J. Benevenga & A. R. Egan, 1985. Effects of cysteine ethyl ester supplements on wool growth rate. Aust. J. Agric. Res. 36: 709–715.

    Google Scholar 

  • Reis, P. J., 1967. The growth and composition of wool. IV. The differential response of growth and of sulphur content of wool to the level of sulphur-containing amino acids given per abomasum. Aust. J. Biol. Sci. 20: 809–825.

    PubMed  Google Scholar 

  • Reis, P. J., 1979. Effects of amino acids on the growth and properties of wool, pp. 223–242 in Physiological and environmental limitations to wool growth, edited by J. L. Black and P. J. Reis. University of New England Publishing Unit, Australia.

    Google Scholar 

  • Reis, P. J. & P. G. Schinckel, 1963. Some effects of sulphur-containing amino acids on the growth and composition of wool. Aust. J. Biol. Sci. 16: 218–230.

    Google Scholar 

  • Reis, P. J., D. A. Tunks & A. M. Downes, 1973. The influence of abomasal and intravenous supplements of sulphurcontaining amino acids on wool growth rate. Aust. J. Biol. Sci. 26: 249–258.

    PubMed  Google Scholar 

  • Robards, G. E., 1971. The wool growth of merino sheep receiving an exponential pattern of methionine infusion to the abomasum. Aust. J. Agric. Res. 22: 261–270.

    Google Scholar 

  • Rogers, G. L., A. M. Bryant & L. M. McLeay, 1979. Silage and dairy cow production. III Abomasal infusions of casein, methionine and glucose, and milk yield and composition. N.Z. J. Ag. Res. 22: 533–541.

    Google Scholar 

  • Sauer, W. C., S. C. Stothers & R. J. Parker, 1977. Apparent availabilities of amino acids in wheat and milling by-products for growing pigs. Can. J. Anim. Sci. 57: 775–784.

    Google Scholar 

  • Sauer, W. C., S. C. Stothers & G. D. Phillips, 1977. Apparent availabilities of amino acids in corn, wheat and barley for growing pigs. Can. J. Anim. Sci. 57: 585–597.

    Google Scholar 

  • Schroeder, H. E., M. R. I. Khan, W. R. Knibb, D. Spencer & T. J. V. Higgins, 1991. Expression of a chicken ovalbumin gene in three lucerne cultivars. Aust. J. Plant Physiol. 18: 495–505.

    Google Scholar 

  • Schroeder, H. E., A. H. Schotz, T. Wardley-Richardson, D. Spencer & T. J. V. Higgins, 1993. Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol. 101: 751–757.

    PubMed  Google Scholar 

  • Semenza, J. C., K. G. Hardwick, N. Dean & H. R. B. Pelham, 1990. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61: 1349–1357.

    PubMed  Google Scholar 

  • Shah, D. M., R. B. Horsch, H. J. Klee, G. M. Kishore, J. A. Winter, N. E. Tumer, C. M. Hironaka, P. R. Sanders, C. S. Gasser, S. Aykent, N. R. Siegel, S. G. Rogers & R. T. Fraley, 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.

    Google Scholar 

  • Spencer, D., P. M. Chandler, T. J. V. Higgins, A. S. Inglis & M. Rubira, 1983. Sequence interrelationships of the subunits of vicilin from pea seeds. Plant Mol. Biol. 2: 259–267.

    Google Scholar 

  • Spencer, D., T. J. V. Higgins, M. Freer, H. Dove & J. B. Coombe, 1988. Monitoring the fate of dietary proteins in rumen fluid using gel electrophoresis. British J. Nutrition 60: 241–247.

    Google Scholar 

  • Stalker, D. M., K. E. McBride & L. D. Malyj, 1988. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 24: 419–422.

    Google Scholar 

  • Stobbs, T. H., D. J. Minson & M. N. McLeod, 1977. The response of dairy cows grazing a nitrogen fertilized grass pasture to a supplement of protected casein. J. Ag. Sc. Camb. 89: 137–141.

    Google Scholar 

  • Taverner, M. R., I. D. Hume & D. J. Farrell, 1981. Availability to pigs of amino acids in cereal grains. 2. Apparent and true ideal availability. British J. Nutrition 46: 159–171.

    Google Scholar 

  • Ulyatt, M. J., 1981. The feeding value of herbage: Can it be improved? N.Z. J. Ag. Sc. 15: 200–205.

    Google Scholar 

  • Van Soest, P. J., 1982. Nutritional ecology of the ruminant. O & B Books, Inc., Oregon.

    Google Scholar 

  • Voelker, T., A. Sturm & M. J. Chrispeels, 1987. Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J. 6: 3571–3577.

    Google Scholar 

  • Wandelt, C., W. Knibb, H. E. Schroeder, M. R. I. Khan, D. Spencer, S. Craig & T. J. V. Higgins, 1991. The expression of an ovalbumin and a seed protein gene in the leaves of transgenic plants. pp. 471–478 in Plant Molecular Biology 2, edited by R. G. Herrman and B. Larkins. Plenum Press, New York.

    Google Scholar 

  • Wandelt, C. I., M. R. I. Khan, S. Craig, H. E. Schroeder, D. Spencer & T. J. V. Higgins, 1992. Vicilin with carboxyterminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. The Plant Journal 2: 181–192.

    PubMed  Google Scholar 

  • Watson, J., 1990. Genetic engineering of low-lignin pasture plants, pp. 215–226 in Microbial and plant opportunities to improve lignocellulose utilization by ruminants, edited by D. E. Akin, L. G. Ljungdahl, J. R. Wilson and P. J. Harris. Elsevier, New York.

    Google Scholar 

  • White, D. W. R. & D. Greenwood, 1987. Transformation of the forage legume Trifolium repens L. using binary Agrobacterium vectors. Plant Mol. Biol. 8: 461–469.

    Google Scholar 

  • Williams, A-J., G. E. Robards & D. G. Saville, 1972. Metabolism of cystine by merino sheep genetically different in wool production II. The responses in wool growth to abomasal infusions of L-cystine or D-methionine. Aust. J. Biol. Sci. 25: 1269–1276.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabe, L.M., Higgins, C.M., McNabb, W.C. et al. Genetic engineering of grain and pasture legumes for improved nutritive value. Genetica 90, 181–200 (1993). https://doi.org/10.1007/BF01435039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435039

Key words

Navigation