Skip to main content
Log in

Zooplankton may not disperse readily in wind, rain, or waterfowl

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton, and especially rotifers, have long been thought to be readily dispersed by wind, rain and animals (especially waterfowl). Given that premise, local processes (tolerance to abiotic conditions, biotic interactions) have been the main focus of ecological studies. We tested the premise of high dispersal rates by incubating particulates collected with windsocks and rain samplers at two sites over 1 year. The sites were 80 km apart and differed in proximity to water and surrounding terrain. We also incubated fecal material of wild ducks. Pond sediments were identically incubated as a test of incubation method. Only bdelloid rotifers were collected in wind samples, and only four rotifer species were collected in rain samples: Lecane leontina, Lecane closterocerca, Keratella cochlearis, and a bdelloid. No metazoans were found in incubated duck feces, yet incubated pond sediments yielded 11 rotifer, one copepod, four cladoceran, and three ostracod species. Our results do not support the premise of readily dispersed zooplankton. If zooplankton dispersal is infrequent and limited to few species, a series of other questions should be addressed on processes regulating zooplankton population dynamics and community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, D. J. & D. W. Garton, 1994. Genetic differentiation in North American and European populations of the cladoceran Bythotrephes. Limnol. Oceanogr. 39: 1503–1516.

    Article  Google Scholar 

  • Boileau, M. G. & P. D. N. Hebert, 1991. Genetic consequences of passive dispersal in pond dwelling copepods. Evolution 45: 721–733.

    Article  Google Scholar 

  • Brown, J. H. & A. C. Gibson, 1983. Biogeography. C. V. Mosby Company, St.Louis, MO, USA.

    Google Scholar 

  • Brown, A. F, 1991. Outbreeding depression as a cost of dispersal in the harpacticoid copepod, Tigriopus californicus. Biol. Bull. 181: 123–126.

    Article  Google Scholar 

  • Carter, J. C. H., M. J. Dadswell, J. C. Roff & W. G. Sprules, 1980. Distribution and zoogeography of planktonic crustaceans and dipterans in glaciated eastern North America. Can. J. Zool. 58: 1355–1387.

    Article  Google Scholar 

  • Chaplin, J. A. & D. J. Ayre, 1997. Genetic evidence of widespread dispersal in a parthenogenetic freshwater ostracod. Heredity 78: 57–67.

    Article  PubMed  CAS  Google Scholar 

  • Connell, J. H., 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42: 710–723.

    Article  Google Scholar 

  • De Stasio, B. T. Jr., 1991. The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70: 1377–1389.

    Article  Google Scholar 

  • Drake, J. A., H. A. Mooney, F. di Castri et al. (eds), 1989. Biological Invasions. A Global Perspective. SCOPE 37. John Wiley & Sons, New York, NY, U.S.A.

  • Frey, D. G., 1986. The non-cosmopolitanism of chydorid Cladocera: implications for biogeography and evolution. In: Gore, R. H. & K. L. Heck (eds), Crustacean Biogeography. Balkema, Rotterdam: 237–256.

    Google Scholar 

  • Fryer, G., 1985. Crustacean diversity in relation to the size of water bodies: some facts and problems. Freshwat. Biol. 15: 347–361.

    Article  Google Scholar 

  • Gislen, T., 1947. Aerial plankton and its conditions of life. Biol. Rev. 23: 109–126.

    Article  Google Scholar 

  • Gotelli, N. J., 1991. Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. Am. Nat. 138: 768–776.

    Article  Google Scholar 

  • Hagiwara, A., 1995. Resting eggs of the marine rotifer Brachionus plicatilis Muller; development, and effect of irradiation on hatching. Hydrobiologia 313/314: 223–229.

    Article  Google Scholar 

  • Hebert, P. D. N. & B. J. Hann, 1986. Patterns in the composition of arctic tundra pond microcrustacean communities. Can. J. Fish. aquat. Sci. 43: 1416–1425.

    Article  Google Scholar 

  • Hebert, P. D. N. & C. Wilson, 1994. Provincialism in plankton: endemism and allopatric speciation in Australian Daphnia. Evolution 48: 1333–1349.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology. Volume II. Introduction to Lake Biology and the Limnoplankton. John Wiley and Sons, New York, NY, U.S.A.

    Google Scholar 

  • Jenkins, D. G. & A. L. Buikema, Jr., 1998. Do similar communities develop in similar sites? A test with zooplankton community structure and function in new ponds. Ecol. Monogr. 68: 421–443.

    Article  Google Scholar 

  • Jenkins, D. G., 1995. Dispersal-limited zooplankton distribution and community composition in new ponds. Hydrobiologia 313/314: 15–20.

    Article  Google Scholar 

  • Karnes, J. & D. McFall (eds), 1995. A directory of Illinois Nature Preserves. Vol. 2 — Northwest, Central, and Southern Illinois. Illinois Dept. of Natural Resources, Springfield, IL, U.S.A.: 321 pp.

    Google Scholar 

  • King, C. E., 1980. The genetic structure of zooplankton populations. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, NH, U.S.A.: 315–328.

    Google Scholar 

  • Lampert, W. & U. Sommer, 1997. Limnoecology. The Ecology of Lakes and Streams. Oxford University Press, New York, NY, U.S.A.: 156.

    Google Scholar 

  • Lewin, R., 1986. Supply-side ecology. Science 234: 25–27.

    Article  PubMed  CAS  Google Scholar 

  • Lowndes, A. G., 1930. Living ostracods in the rectum of a frog. Nature 126: 958.

    Article  Google Scholar 

  • Maguire, B., 1959. Passive overland transport of small aquatic organisms. Ecology 40: 312.

    Article  Google Scholar 

  • Maguire, B., 1963. The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecol. Monogr. 33: 161–185.

    Article  Google Scholar 

  • Malone, C. R., 1965. Dispersal of plankton: rate of food passage in mallard ducks. J. Wildlife Management 29: 529–533.

    Article  Google Scholar 

  • Marcus, N., 1979. The population biology and nature of diapause of Labidocera aestiva (Copepoda: Calanoida). Biol. Bull. 157: 297–305.

    Article  Google Scholar 

  • May, L., 1986. Rotifer sampling — a complete species list from one visit? Hydrobiologia 134: 117–120.

    Google Scholar 

  • McAtee, W. L., 1917. Showers of organic matter. Monthly Weather Rev. May: 217–224.

  • Mellors, W. K., 1975. Selective predation of ephippial Daphnia and the resistance of ephippial eggs to digestion. Ecology 56: 974–980.

    Article  Google Scholar 

  • Paine, R. T., 1974. Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15: 93–120.

    Article  Google Scholar 

  • Pennak, R. W., 1989. Freshwater invertebrates of the United States, 3rd edn. John Wiley and Sons, New York, NY, U.S.A.: 628 pp.

    Google Scholar 

  • Proctor, V. W., 1964. Viability of crustacean eggs recovered from ducks. Ecology 45: 656–658.

    Article  Google Scholar 

  • Proctor, V. W. & C. R. Malone, 1965. Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology 46: 728–729.

    Article  Google Scholar 

  • Proctor, V. W., C. R. Malone & V. L. DeVlaming 1967. Dispersal of aquatic organisms: viability of disseminules recovered from the intestinal tract of captive killdeer. Ecology 48: 672–676.

    Article  Google Scholar 

  • Ricklefs, R. E., 1987. Community diversity: relative roles of local and regional processes. Science 235: 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. V. & J. E. Dickerson, 1987. Does invasion sequence affect community structure? Ecology 68: 587–595.

    Article  Google Scholar 

  • Roughgarden, J., 1989. The structure and assembly of communities. In Roughgarden, J., R. M. May & S. A. Levin (eds), Perspectives in Ecological Theory. Princeton University Press, Princeton, NJ, U.S.A.: 203–226.

    Google Scholar 

  • Roughgarden, J., S. D. Gaines & S. W. Pacala, 1987. Supply side ecology: the role of physical transport processes. In Gee, J. H. R. & P. S. Giller (eds), 27th Symposium of British Ecological Society. Blackwell, Boston, MA, U.S.A.: 491–518.

    Google Scholar 

  • Schlichting, H. E. & L. E. Milliger, 1969. The dispersal of microorganisms by a hemipteran, Lethocerus uhleri (Montandon). Trans. am. Microsc. Soc. 88: 452–454.

    Article  PubMed  Google Scholar 

  • Schwartz, S. S. & P. D. Hebert, 1987. Methods for the activation of the resting eggs of Daphnia. Freshwat. Biol. 171: 173–179.

    Google Scholar 

  • Sides, S. L., 1973. Observation on dispersal of algae and protozoa by the cabbage butterfly. Trans. am. Microsc. Soc. 9: 96–97.

    Google Scholar 

  • Stemberger, R. S., 1995. Pleistocene refuge areas and postglacial dispersal of copepods of the northeastern United States. Can. J. Fish. aquat. Sci. 52: 2197–2210.

    Article  Google Scholar 

  • Stewart, K. W. & H. E. Schlichting, 1966. Dispersal of algae and protozoa by selected aquatic insects. J. Ecol. 54: 551–562.

    Article  Google Scholar 

  • Swanson, G. A., 1984. Dissemination of amphipods by waterfowl. J. Wildl. Manage. 48: 988–991.

    Article  Google Scholar 

  • Taylor, A. D., 1990. Metapopulations, dispersal, and predator-prey dynamics: an overview. Ecology 71: 429–433.

    Article  Google Scholar 

  • Thier, E., 1994. Allozyme variation among natural populations of Holopedium gibberum (Crustacea; Cladocera). Freshwat. Biol. 31: 87–96.

    Article  CAS  Google Scholar 

  • Underwood, A. J. & E. J. Denley, 1984. Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. In Strong, D. R. Jr., D. Simberloff, L. G. Abele & A. B. Thistle (eds), Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton, NJ, U.S.A.: 151–180.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd edn. Saunders, Philadelphia: 767 pp.

    Google Scholar 

  • Weider, L. J., 1989. Spatial heterogeneity and clonal structure in arctic populations of apomictic Daphnia. Evolution 70: 1405–1413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, D.G., Underwood, M.O. Zooplankton may not disperse readily in wind, rain, or waterfowl. Hydrobiologia 387, 15–21 (1998). https://doi.org/10.1023/A:1017080029317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017080029317

Navigation