Skip to main content
Log in

Determination of the change of nuclear charge radius of the119Sn Mössbauer transition by internal conversion

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Radioactive119Sb was implanted into six host matrices (CaSnO3, Pt, Y, Au,Β-Sn, Pb) and internal conversion electrons of the 23.87 keV transition in119Sn were measured with an iron-free magnetic spectrometer as well as Mössbauer spectra. In the analysis of the conversion spectra of outermost electrons, the overlapping K-LM Auger lines were subtracted using the Auger spectrum of tin measured with another source of117mSn, and the shake-off effect accompanying the conversion process was considered. From the correlation between the Mössbauer isomer shifts and the intensity ratios of O-shell to N1-shell conversion electrons, the change of the nuclear charge radius of the 23.87 keV transition of119Sn was deduced to be δR/R=(0.87 ± 0.25) × 10−4 for a uniform charge distribution ofR= 1.2 ×A 1/3 fm or, equivalently, δ 〈r2>—=(3.6 ± 1.0) ×10−3 fm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Belyakov, Phys. Lett. 16(1965)279.

    Google Scholar 

  2. R.A. Uher and R.A. Sorensen, Nucl. Phys. 86(1966)1.

    Google Scholar 

  3. A.J. Boyle, St.P. Bunbury and C. Edwards, Proc. Phys. Soc. London 79(1962)416.

    Google Scholar 

  4. V.I. Goldanskii, G.M. Gorodinskii, S.V. Karyagin, L.A. Korytko, L.M. Karizhauskii, E.F. Makarov, I.P. Suzdalev and V.V. Khrapov, Proc. Acad. Sci. URRS, Phys. Chem. Sect. 147(1962)766.

    Google Scholar 

  5. D.A. Shirley, Rev. Mod. Phys. 36(1964)339.

    Google Scholar 

  6. M. Cordey-Hayes, J. Inorg. Nucl. Chem. 26(1964)915.

    Google Scholar 

  7. I.B. Bersuker, V.I. Goldanskii and E.F. Makarov, Sov. Phys. JETP 22(1966)485.

    Google Scholar 

  8. S.L. Ruby, G.M. Kalvius, G.B. Beard and R.E. Snyder. Phys. Rev. 159(1967)239.

    Google Scholar 

  9. J.K. Lees and P.A. Flinn, J. Chem. Phys. 48(1968)882.

    Google Scholar 

  10. N.N. Greenwood, P.G. Perkins and D.H. Wall, Phys. Lett. 28A(1968)339.

    Google Scholar 

  11. J. DeVooght, P.M. Gielen and S. Lejeune, J. Organometal. Chem. 21(1970)333.

    Google Scholar 

  12. H. Micklitz and P.H. Barrett, Phys. Rev. B5(1972)1704.

    Google Scholar 

  13. E. Antoncik, Phys. Stat. Sol. (b) 79(1977)605.

    Google Scholar 

  14. H. Micklitz, Hyp. Int. 3(1977)135.

    Google Scholar 

  15. E. Antoncik, Phys. Rev. B23(1981)6524.

    Google Scholar 

  16. E. Antoncik, Hyp. Int. 11(1981)265.

    Google Scholar 

  17. J.-P. Bocquet, Y.Y. Chu, O.C. Kistner, M.L. Perlman and G.T. Emery, Phys. Rev. Lett. 17(1966)809.

    Google Scholar 

  18. G.T. Emery and M.L. Perlman, Phys. Rev. B1(1970)3885.

    Google Scholar 

  19. G.M. Rothberg, S. Guimard and N. Benczer-Koller, Phys. Rev. B1(1970)136.

    Google Scholar 

  20. P. Roggwiller and W. Kündig, Phys. Rev. B11(1975)4179.

    Google Scholar 

  21. W.J.J. Spijkervet and F. Pleiter, Hyp. Int. 7(1979)285.

    Google Scholar 

  22. W.J.J. Spijkervet, F. Pleiter and H. de Waard, Hyp. Int. 8(1980)173.

    Google Scholar 

  23. H. Muramatsu, T. Miura, H. Nakahara, M. Fujioka, E. Tanaka and H. Hashizume, Hyp. Int. 15/16(1983)269.

    Google Scholar 

  24. I.M. Band, L.A. Sliv and M.B. Trzhakovskaya, Nucl. Phys. A156(1970)170.

    Google Scholar 

  25. M. Fujioka, US-Japan Joint Seminar on Hyperfine Interactions Involving Excited Nuclei, Aug. 30–Sept. 1, 1972, Kobe (unpublished).

  26. E.M. Anderson, M.A. Listengarten and M.A. Khanokind, Izv. Akad. Nauk (ser. fiz.) 34(1970)850.

    Google Scholar 

  27. U. Raff, K. Alder and G. Baur, Helv. Phys. Acta 45(1972)427.

    Google Scholar 

  28. M. Fujioka, T. Shinozuka, E. Tanaka, Y. Arai, S. Hayashibe and T. Ishimatsu, Nucl. Instr. Meth. 186(1981)121.

    Google Scholar 

  29. T. Miura, Y. Hatsukawa, H. Muramatsu and H. Nakahara, to be published.

  30. Y. Tendou, A. Hashizume, Y. Awaya, T. Akiba, K. Ueda, D. Nagata, Y. Shida and T. Asahi, Mitsubishi Electric Corp. Report 42(1968)369.

    Google Scholar 

  31. H. Muramatsu, H. Nakahara and M. Yanokura, J. Inorg. Nucl. Chem. 43(1981)1727.

    Google Scholar 

  32. P.A. Flinn, Mössbauer Isomer Shifts, ed. G.K. Shenoy and F.E. Wagner (North-Holland, Amsterdam, 1978) Ch. 9a.

    Google Scholar 

  33. G. Weyer, A. Nylandsted Larsen, B.I. Deutch, J.U. Andersen and E. Antoncik, Hyp. Int. 1(1975)93.

    Google Scholar 

  34. A. Nylandsted Larsen and G. Weyer, J. Phys. F9(1979)27.

    Google Scholar 

  35. S. Damgaard, J.W. Petersen and G. Weyer, J. Phys. C14(1981)993.

    Google Scholar 

  36. G. Weyer, S. Damgaard and J.W. Petersen, Phys. Lett. 76A(1980)321.

    Google Scholar 

  37. J.W. Petersen, O.K. Nielsen, G. Weyer, E. Antoncik and S. Damgaard, Phys. Rev. B21(1980)4292.

    Google Scholar 

  38. G. Weyer, S. Damgaard, J.W. Petersen and J. Heinemeier, Hyp. Int. 7(1980)449.

    Google Scholar 

  39. G. Weyer, A. Nylandsted Larsen, N.E. Holm and H.L. Nielsen, Phys. Rev. B21(1980)4939.

    Google Scholar 

  40. A. Nylandsted Larsen, G. Weyer and L. Nanver, Phys. Rev. B21(1980)4951.

    Google Scholar 

  41. J.W. Petersen, S. Damgaard and G. Weyer, J. Phys. F11(1981)487.

    Google Scholar 

  42. G. Weyer, Nucl. Instr. Meth. 186(1981)201.

    Google Scholar 

  43. H. Andreasen, S. Damgaard, J.W. Petersen, G. Weyer and ISOLDE collaboration, Phys. Lett. 90A(1982)89.

    Google Scholar 

  44. H. Andreasen, S. Damgaard, J.W. Petersen and G. Weyer, J. Phys. F13(1983)2077.

    Google Scholar 

  45. See, for example, Chemical Applications of Mössbauer Spectroscopy, ed. V.I. Goldanskii and R.H. Herber (Academic, New York, 1968) p. 34.

    Google Scholar 

  46. M. Fujioka, unpublished.

  47. M. Fujioka and M. Takashima, J. Phys. 40(1979)C2, 32.

    Google Scholar 

  48. M. Fujioka, M. Takashima, M. Kanbe, O. Dragoun and M. Rysavy, Z. Phys. A299(1981)283.

    Google Scholar 

  49. M. Fujioka and T. Shinohara, Nucl. Instr. Meth. 120(1974)547.

    Google Scholar 

  50. J.-P. Bocquet, Y.Y. Chu, G.T. Emery and M.L. Perlman, Phys. Rev. 167(1968)1117.

    Google Scholar 

  51. F.P. Larkins, Atom. Data and Nucl. Data Tables 20(1977)311.

    Google Scholar 

  52. F.T. Porter and M.S. Freedman, Phys. Rev. C3(1971)2285.

    Google Scholar 

  53. T.A. Carlson, C.W. Nestor, Jr., T.C. Tucker and F.B. Malik, Phys. Rev. 169(1968)27.

    Google Scholar 

  54. J.C. Slater, Phys. Rev. 36(1930)57.

    Google Scholar 

  55. F.T. Porter, M.S. Freedman and F. Wagner, Jr., Phys. Rev. C3(1971)2246.

    Google Scholar 

  56. F. Rösel, H.M. Fries, K. Alder and C. Pauli, Atom. Data and Nucl. Data Tables 21(1978)91.

    Google Scholar 

  57. I.M. Band and V.I. Fomichev, Atom. Data and Nucl. Data Tables 23(1979)295.

    Google Scholar 

  58. Yong-Ki Kim, Phys. Rev. 154(1967)17; and private communication (1983).

    Google Scholar 

  59. S.L. Ruby and G.K. Shenoy, Phys. Rev. 186(1969)326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muramatsu, H., Miura, T., Nakahara, H. et al. Determination of the change of nuclear charge radius of the119Sn Mössbauer transition by internal conversion. Hyperfine Interact 20, 305–325 (1984). https://doi.org/10.1007/BF02069379

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069379

Keywords

Navigation