Skip to main content
Log in

Theoretical calculations of electron densities in zinc chalcogenides and in zinc fluoride

  • Chemical Structure and Bonding
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Self-consistent, non-relativistic Hartree-Fock calculations on a finite cluster of atoms with zinc at the center have been performed on the zinc blende compounds ZnTe, ZnSe, ZnS, on ZnO (wurtzite structure), ZnO (NaCl structure), and on ZnF2 (rutile-type structure) to obtain changes in s electron density Δρ(0) at the67Zn nucleus. We solved the eigenvalue problem of the dynamic matrix to calculate the second-order Doppler shiftS SOD using appropriate force constant models and determined the isomer shiftS from the measured center shift for each compound. Our calculations clearly show the importance of the covalency of the Zn-ligand bond for the origin ofS and fully corroborate the experimental linear correlations between decreasingS values and increasing electronegativity of the ligands. The most important contribution to Δρ(0) comes from the Zn(4s) electrons, with a smaller but significant contribution from the Zn(3s) electrons. For the change of the mean-square nuclear charge radius for the Mössbauer transition in67Zn, we obtain Δ〈r 2〉=+(13.9±1.4) × 10−3 fm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gunshor, A. Nurmikko and M. Kobayashi, Physics World 5(3) (1992)46.

    Google Scholar 

  2. D. Griesinger, R.V. Pound and W. Vetterling, Phys. Rev. B15(1977)3291.

    Google Scholar 

  3. A. Forster, W. Potzel and G.M. Kalvius, Z. Phys. B37(1980)209.

    Google Scholar 

  4. W. Potzel, in:Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 1, eds. G.J. Long and F. Grandjean (Plenum Press, New York, 1993), and references therein.

    Google Scholar 

  5. K.A. Colbourn and J. Hendrick, in:Computer Simulation of Solids, eds. C.R.A. Catlow and W.C. Mackrodt (Springer, New York, 1982) p. 67.

    Google Scholar 

  6. T.H. Dunning and P.J. Hay, in:Modern Theoretical Chemistry, Vol. 3, ed. H.F. Schaefer (Plenum Press, New York, 1977) chap. 1.

    Google Scholar 

  7. S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki (eds.),Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdma, 1984).

    Google Scholar 

  8. A. Hinchliffe,Ab Initio Determination of Molecular Properties (Adam Hilger, Bristol, 1987).

    Google Scholar 

  9. A.J.H. Wachters, J. Chem. Phys. 52(1969)1033.

    Google Scholar 

  10. D.R. Yarkony and H.F. Schaefer, Chem. Phys. Lett. 15(1972)514.

    Google Scholar 

  11. G.K. Shenoy and B.D. Dunlap, in:Mössbauer Isomer Shifts, eds. G.K. Shenoy and F.E. Wagner (North-Holland, Amsterdam, 1978) appendix IV.

    Google Scholar 

  12. K. Kunc and H. Bilz, Solid State Commun. 19(1976)1027.

    Google Scholar 

  13. K. Thomas, B. Dorner, G. Duesing and W. Wegener, Solid State Commun. 15(1974)1111.

    Google Scholar 

  14. C. Benoit and J. Giordano, J. Phys. C21(1988)5209.

    Google Scholar 

  15. D.W. Mitchell, T.P. Das, W. Potzel, G.M. Kalvius, H. Karzel, W. Schiessl, M. Steiner and M. Köfferlein, Phys. Rev. B48(1993)16449.

    Google Scholar 

  16. F. Buheitel, W. Potzel and D.C. Aumann, Hyp. Int. 47(1989)606.

    Google Scholar 

  17. A. Svane and E. Antoncik, Phys. Rev. B33(1986)7462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, D.W., Das, T.P., Potzel, W. et al. Theoretical calculations of electron densities in zinc chalcogenides and in zinc fluoride. Hyperfine Interact 90, 411–415 (1994). https://doi.org/10.1007/BF02069148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069148

Keywords

Navigation