Skip to main content
Log in

The anomalous Mössbauer fraction of ferritin and polysaccharide iron complex (PIC)

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mössbauer studies of the ubiquitous protein molecule ferritin and its synthetic “biomimic” polysaccharide iron complex (PIC) exhibit an anomaly in the Mössbauer spectrum wherein the recoil free fraction orf-factor has a sharp drop with respect to temperature as the temperature rises above 30 K for mammalian ferritin and 60 K for PIC. The anomaly coincides with the disappearance of hyperfine splitting, which is due to superparamagnetic relaxation above the blocking temperature. Different absorbers were used to experimentally investigate the effect of absorber thickness on the Mössbauer spectrum. The anomaly persists for thin absorbers. Also, spectra treated with FFT procedures to eliminate the thickness effect still exhibit this anomaly. Motion of the core with respect to the protein shell was also eliminated as a possible source for this phenomenon, by comparing the Debye temperature obtained from the temperature dependence of thef-factor and the isomer shift. A comparison of the magnetic anisotropy constants from magnetization studies with those obtained by relating the hyperfine fieldH of the Mössbauer spectra to the fluctuations of the magnetization imply that the ferritin and PIC molecules possess magnetic anisotropy energy which may not be strictly uniaxial. This, we believe, may be intimately connected with the mechanism causing thef-factor anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Yariv et al., Biochem. J. 197 (1981) 171.

    Google Scholar 

  2. E.I. Stiefel and G.D. Watt, Nature 279 (1979) 81.

    Google Scholar 

  3. E.C. Theil, in:Advances in Inorganic Biochemistry, Vol. 5, eds. E.C. Theil, G.L. Eichorn and L.G. Marzilli (Elsevier, Amsterdam, 1983).

    Google Scholar 

  4. K.M. Towe and W.F. Bradley, J. Colloid, Interface Sci. 24 (1967) 384.

    Google Scholar 

  5. C.C. Ford et al., Phil. Trans. Roy. Soc. B 304 (1984) 551.

    Google Scholar 

  6. D.W. Rice et al. in:Advances in Inorganic Biochemistry, Vol. 5, eds. E.C. Theil, G.L. Eichorn and L.G. Marzilli (Elsevier, Amsterdam, 1983)

    Google Scholar 

  7. P.M. Harrison, in:Advances in Inorganic Biochemistry, Vol. 5, eds. E.C. Theil, G.L. Eichorn and L.G. Marzilli (Elsevier, Amsterdam, 1983).

    Google Scholar 

  8. D.M. Lawson et al., Nature 349 (1991) 542.

    Google Scholar 

  9. D.M. Lawson et al., FEBS Lett. 254 (1989) 207.

    Google Scholar 

  10. E.R. Bauminger et al., Biochem. Biophys. Acta 1118 (1991) 48.

    Google Scholar 

  11. D.L. Jacobs et al., Biochemistry 28 (1989) 1650.

    Google Scholar 

  12. A. Treffy et al., FEBS Lett. 302 (1992) 108.

    Google Scholar 

  13. A. Blaise et al., Compt. Rend. Acad. Sci. Paris 261 (1965) 2310; 265 (1967) 1077.

    Google Scholar 

  14. R.B. Frankel et al., Hyp. Int. 33 (1987) 233.

    Google Scholar 

  15. B. Kolk, in:Dynamical Properties of Solids, Vol. 5, eds. G.K. Horton and A.A. Maradudin (North-Holland, Amsterdam, 1984)

    Google Scholar 

  16. H. Frauenfelder,The Mössbauer Effect (Benjamin, New York, 1963).

    Google Scholar 

  17. J.F. Sanders, Mich. Med. 7 (1968) 726

    Google Scholar 

  18. R.W. Nexton et al., Clin. Trials J. 17 (1980) 106; O.W. Crawford, Ill. Med. J. (1970).

    Google Scholar 

  19. K.A. Berg et. al., J. Inorg. Biochem. 22 (1984) 125.

    Google Scholar 

  20. M-E.Y. Mohie-Eldin, PhD Thesis, Tufts University, Medford, MA, USA (1992).

    Google Scholar 

  21. U.S. Patent No. 3821192 process for preparing an iron-saccharide complex.

  22. T.G. Spiro and P. Saltman, Struct. Bonding 6 (1969) 116

    Google Scholar 

  23. P.J. Murphy et al., J. Colloid Interf. Sci. 56 (1976) 312.

    Google Scholar 

  24. M-E.Y. Mohie-Eldin, R.B. Frankel and L. Gunther, J. Magn. Magn. Mater. 135 (1994) 65.

    Google Scholar 

  25. F. Varret, J. Phys. Chem. Solids 37 (1976) 265.

    Google Scholar 

  26. N.N. Greenwood and T.C. Gibb,Mössbauer Spectroscopy (Chapman and Hall, London, 1971).

    Google Scholar 

  27. V.I. Goldanskii and R.H. Herber,Chemical Applications of Mössbauer Spectroscopy (Academic Press, New York, 1968).

    Google Scholar 

  28. J. Herberle and S. Franco, Z. Naturforsch. 10 (1968) 1439.

    Google Scholar 

  29. S. Margulies and J.R. Ehrman, Nucl. Instr. Meth. 12 (1961) 131.

    Google Scholar 

  30. S.L. Ruby and J.M. Hicks, Rev. Sci. Instr. 33 (1962) 27.

    Google Scholar 

  31. M.C.D. Ure and P.A. Flinn, in:Mössbauer Effect Methodology, Vol. 7, ed. I.J. Gruverman (Plenum Press, New York, 1971) p. 245.

    Google Scholar 

  32. R.B. Frankel et al., Hyp. Int. 66 (1991) 71.

    Google Scholar 

  33. P. Roggwiller and W. Kundig, Solid State Commun. 12 (1973) 901.

    Google Scholar 

  34. S. Mørup and H. Topsøe, Appl. Phys. 11 (1976) 63.

    Google Scholar 

  35. S. Mørup et al., J. Phys. (Paris) 37 (1976) C6–287.

    Google Scholar 

  36. S. Mørup, Hyp. Int. 60 (1990) 959

    Google Scholar 

  37. S. Mørup, J. Magn. Magn. Mater. 37 (1983) 39.

    Google Scholar 

  38. J.M. Williams et al., Phys. Med. Biol. 23 (1978) 835.

    Google Scholar 

  39. M. Abramowitz and I.A. Stegun, eds.,Handbook of Mathematical Functions (Dover, New York, 1972) pp. 297, 305, 319.

    Google Scholar 

  40. T.G. St. Pierre et al., J. Magn. Mater. 69 (1987) 276.

    Google Scholar 

  41. M.P.A. Viegers and J.M. Trooster, Phys. Rev. B 15 (1977) 72.

    Google Scholar 

  42. I.P. Suzdalev et al., Sov. Phys. JETP 24 (1968) 79.

    Google Scholar 

  43. M.Hayashi et al., J.Phys.C13 (1980) 681.

    Google Scholar 

  44. A.M. van der Kraan, Phys. Stat. Sol. 18a (1973) 215.

    Google Scholar 

  45. J.W. Niemantsverdriet et al., Phys. Lett. 100A 8 (1984) 445.

    Google Scholar 

  46. J. Heberle, Möss. Effect. Meth. 7 (1971) 299.

    Google Scholar 

  47. K. A. Hardy et al., Nucl. Instr. Meth. 86 (1970) 171.

    Google Scholar 

  48. M-E.Y. Mohie-Eldin and L. Gunther, in:Proc. Int. Workshop on Studies of Magnetic Properties of Fine Particles and Their Relevance to Materials Science, Rome, eds. J.L. Dormann and D. Fiorani (Elsevier, Amsterdam, 1992) p.403.

    Google Scholar 

  49. M-E.Y. Mohie-Eldin and L. Gunther, J. Magn. Magn. Mater. 127 (1993) 346.

    Google Scholar 

  50. L. Gunther and M.-E.Y. Mohie-Eldin, J. Magn. Magn. Mater. 129 (1994) 334.

    Google Scholar 

  51. C.Hawkins, private communication.

  52. S.H. Bell, Biochem. Biophys. Acta. 787 (1984) 227

    Google Scholar 

  53. E.R. Bauminger, Biochem. Biophys. Acta. 623 (1980) 237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was carried out in partial fulfilment of the requirements of the PhD degree at Tufts University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohie-Eldin, M.E.Y., Frankel, R.B., Gunther, L. et al. The anomalous Mössbauer fraction of ferritin and polysaccharide iron complex (PIC). Hyperfine Interact 96, 111–138 (1995). https://doi.org/10.1007/BF02066277

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02066277

Keywords

Navigation