Skip to main content
Log in

Conformational analysis of a farnesyltransferase peptide inhibitor, CVIM

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The conformational states of the peptide Cys-Val-Ile-Met (or CVIM) were computed and characterized. CVIM inhibits farnesylation of the Ras oncogene product, p21ras, at the cysteine residue of the C-terminal segment. CVIM is active in an extended conformation. A similar peptide (KTKCVFM) appears to bind the enzyme in the Type I bend conformation. In the present study, the conformations of CVIM were computed in an aqueous environment with the peptide in the zwitterionic state. Solvation free energy based on solvent accessible surface area and a distance dependent dielectric were used in the calculations. Final conformations of multiple independent Monte Carlo simulated annealing (MCSA) conformational searches were used as starting points for Metropolis Monte Carlo (MMC) runs. Conformations saved at intervals during MMC runs were analyzed. Conformers were separated by interactive clustering in dihedral angle coordinates. The four lowest energy conformers corresponding to a Type I bend, extended, AB-bend, and BA-bend were within 0.3 kcal/mol of each other, and dominant in terms of population. The Type I bend and extended conformers were supported by the binding studies. The extended conformer was the most populated. In the AB-bend conformer, `A' indicates the α-helix conformation of Val, and `B' indicates the β-strand conformation of Ile. The AB- and BA-bend conformations differed from the extended conformation in the value of Val ψ and Ile ψ, respectively, and from the Type I bend conformation in the value of Ile ψ and Val ψ, respectively. The four lowest energy conformers were characterized in terms of energy, density of low energy conformations (or entropy), structure, side chain rotamer fraction population, and interatomic distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grand, B.A. and Owen, D., Biochem. J., 279 (1991) 609.

    Google Scholar 

  2. Barbacid, M., Annu. Rev. Biochem., 56 (1987) 779.

    Google Scholar 

  3. Der, C.J. and Cox, A.D., Cancer Cells, 3 (1991) 331.

    Google Scholar 

  4. Hancock, J.F., Magee, J.E. and Marshall, C.J., Cell, 57 (1989) 1167.

    Google Scholar 

  5. Casey, P.J., Solski, P.A., Der, C.J. and Buss, J.E., Proc. Natl. Acad. Sci. USA, 86 (1989) 8323.

    Google Scholar 

  6. Gutierrez, L., Magee, A.I., Marshall, C.J. and Hancock, J.F., EMBO J., 8 (1989) 1093.

    Google Scholar 

  7. Reiss, Y., Seabra, M.C., Goldstein, J.L. and Brown, M.S., Methods, 1 (1990) 241.

    Google Scholar 

  8. Reiss, Y., Goldstein, J.L., Seabra, M.C., Casey, P.J. and Brown, M.S., Cell, 62 (1990) 81.

    Google Scholar 

  9. Leonard, D.M., J. Med. Chem., 40 (1997) 29721.

    Google Scholar 

  10. Qian, Y., Blaskovich, M.A., Saleem, M., Seong, C.M., Wathen, S.P., Hamilton, A.D. and Sebti, S.M., J. Biol. Chem., 269 (1994) 12410.

    Google Scholar 

  11. Qian, Y., Vogt, A., Sebti, S.M. and Hamilton, A.D., J. Med. Chem., 39 (1996) 217.

    Google Scholar 

  12. Leonard, D.M., Shuler, K.R., Poulter, C.J., Eaton, S.R., Sawyer, T.M., Hodges, J.C., Su, T., Scholten, J.D., Gowan, R.C., Sebolt-Leopold, J.S. and Doherty, A.M., J. Med. Chem., 39 (1996) 217.

    Google Scholar 

  13. Stradley, S.J., Rizo, J. and Gierasch, L., Biochemistry, 32 (1993) 12586.

    Google Scholar 

  14. Carlacci, L., J. Comput.-Aided Mol. Design, 12 (1998) 195.

    Google Scholar 

  15. McKelvey, D.R., Brooks, C.L. and Mokotoff, M., J. Protein Chem., 10 (1991) 265.

    Google Scholar 

  16. Zimmerman, S.S., Pottle, M.S., Némethy, G. and Scheraga, H.A., Macromolecules, 10 (1977) 1.

    Google Scholar 

  17. IUPAC-IUB Commission on Biochemical Nomenclature, Biochemistry, 9 (1970) 3471.

    Google Scholar 

  18. Karpen, M.E., Tobias, D.J. and Brooks, C.L., Biochemistry, 32 (1993) 412.

    Google Scholar 

  19. Richardson, J.S., Adv. Protein Chem., 34 (1981) 167.

    Google Scholar 

  20. Némethy, G., Pottle, M.S. and Scheraga, H.A., J. Phys. Chem., 87 (1983) 1883.

    Google Scholar 

  21. CHARMm is a trademark of Molecular Simulations Inc., San Diego, CA.

  22. Vila, J., Williams, R.L., Vasquez, M. and Scheraga, H.A., Proteins Struct. Funct. Genet., 10 (1991) 199.

    Google Scholar 

  23. Wesson, L. and Eisenberg, D., Protein Sci., 1 (1992) 227.

    Google Scholar 

  24. Perrot, G., Cheng, B., Gibson, K.D., Vila, J., Palmer, K.A., Nayeem, A., Maigret, B. and Scheraga, H.A., J. Comput. Chem., 13 (1992) 1.

    Google Scholar 

  25. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E.J., Chem. Phys., 21 (1953) 1087.

    Google Scholar 

  26. Carlacci, L. and Englander, S.W., J. Comput. Chem., 17 (1996) 1002.

    Google Scholar 

  27. Makhatadze, G.I. and Privalov, P.L., Protein Sci., 5 (1996) 507.

    Google Scholar 

  28. Rick, S.W. and Berne, B.J., J. Am. Chem. Soc., 116 (1994) 3949.

    Google Scholar 

  29. Rick, S.W. and Berne, B.J., J. Am. Chem. Soc., 118 (1996) 672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlacci, L. Conformational analysis of a farnesyltransferase peptide inhibitor, CVIM. J Comput Aided Mol Des 14, 369–382 (2000). https://doi.org/10.1023/A:1008175919794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008175919794

Navigation