Skip to main content
Log in

Molecular modeling studies on the urease active site and the enzyme-catalyzed urea hydrolysis

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

These studies are an attempt to gain better insight into the pharmacophore requirements of urease. On the basis of published information on this enzyme (EXAFS, amino acid sequence, essential groups at the active site) a hypothetical nickel-tripeptide complex, as preliminary substitute for the urease active site was modeled using computer-aided molecular modeling techniques. The results suggest two alternative docking modes of urea and reaction intermediates, corresponding to two different reaction mechanisms. Both binding modes are compatible with the docking of known potent inhibitors such as selected hydroxamic acids and phosphorodiamides. The results can be used to help in the design of new potential inhibitors of urease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinez, A. and Diamond, R.B., In Hauck, R.D. (Ed.) Nitrogen Use in World Crop Production, American Society of Agronomy, Madison, WI, 1985.

    Google Scholar 

  2. Harre, E.A. and Bridges, J.D., In Bock, B.R. and Kissel, D.E. (Eds.) Ammonia Volatilization from Urea Fertilizers: Importance of Urea Fertilizers, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, AL, 1988, Bulletin Y-206, pp. 1–15.

    Google Scholar 

  3. Vlek, P.L.G. and Craswell, E.T., Soil Sci. Soc. Am., 43 (1979) 352.

    Google Scholar 

  4. Terman, G.L., Adv. Agron., 3 (1979) 189.

    Google Scholar 

  5. Vlek, P.L.G. and Craswell, E.T., Fertilizer Res., 2 (1981) 227.

    Google Scholar 

  6. Mulvaney, R.L. and Bremner, J.M., In Paul, E.A. and Ladd, T.N. (Eds.) Soil Biochemistry, Vol. 5 (Control of Urea Transformations in Soils), Marcel Dekker, Inc., New York, NY, 1981, pp. 153–196.

    Google Scholar 

  7. Blakeley, R.L. and Zerner, B., J. Mol. Catal., 23 (1984) 263.

    Google Scholar 

  8. Barth, A. and Michel, J.J., Biochem. Physiol. Planzen, 163 (1972) 103.

    Google Scholar 

  9. Medina, R., Olleros, T. and Schmidt, H.-L., In Schmidt, H.-L., Förstel, H. and Heinzinger, J. (Eds.) Stable Isotopes (Proceedings of the 4th International Conference), Jülich, Elsevier, Amsterdam, 1981, pp. 77–82.

    Google Scholar 

  10. Dixon, N.E., Riddles, P.W., Gazzola, C., Blakeley, R.L. and Zerner, B., Can. J. Biochem., 58 (1980) 1335.

    Google Scholar 

  11. Kumani, K., Tomioka, S., Kobashi, K. and Hase, J., Chem. Pharm. Bull., 20 (1972) 1599.

    Google Scholar 

  12. Munakata, K., Kobashi, K. and Hase, J., J. Pharm. Dyn., 3 (1980) 457.

    Google Scholar 

  13. Kanoda, M., Shinida, H., Kobashi, K., Hase, J. and Nagahara, S., J. Pharm. Dyn., 5 (1982) 49.

    Google Scholar 

  14. Medina, R. and Radel, R.J., In Bock, B.R. and Kissel, D.E. (Eds.) Ammonia Volatilization from Urea Fertilizers: Mechanisms of Urea Inhibition, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, AL, 1988, Bulletin Y-206, pp. 137–174.

    Google Scholar 

  15. Alagna, L., Hasnain, S.S., Piggott, B. and Williams, D.J., Biochem. J., 220 (1984) 591.

    Google Scholar 

  16. Mamiya, G., Takishima, K., Masakuni, M., Kayumi, T., Ogawa, K. and Sekita, T., Proc. Japan Acad., 61 (1985) 395.

    Google Scholar 

  17. Müller, K., Amman, H.J., Doran, D.M., Gerber, P.R. and Schrepfer, G., in Harms, A.F. (Ed.) Innovative Approaches in Drug Research, Elsevier, Amsterdam, 1986, pp. 125–133.

    Google Scholar 

  18. Sakurai, T., Iwasaki, H., Katano, T. and Nakahashi, Y., Acta Crystallogr. Sect. B, 34 (1978) 660.

    Google Scholar 

  19. Fraser, K.A. and Harding, M.M., J. Chem. Soc. A., (1967) 415.

  20. Freeman, H.C. and Guss, J.M., Acta Crystallogr. Sect. B, 28 (1972) 2090.

    Google Scholar 

  21. Bonnet, J.-J. and Jeannin, Y., Bull. Soc. Fr. Miner. Cristallogr., 93 (1970) 287–299.

    Google Scholar 

  22. Bonnet, J.-J. and Jeannin, Y., Bull. Soc. Fr. Miner. Cristallogr., 95 (1972) 61–67.

    Google Scholar 

  23. Shvelashvili, A.E., Miminoshvili, E.B., Shchedrin, B.M., Kvitashvili, A.I., Kandelaki, M.N., Sakvarelidze, T.N. and Tavberidze, M.G., Koord. Khim., 6 (1980) 1251.

    Google Scholar 

  24. Ahmed, K.J., Habib, A., Haider, S.Z., Malik, K.M.A. and Hess, H.J., Bangladesh Acad. Sci., 4 (1980) 85.

    Google Scholar 

  25. Gerber, P.R. and Müller, K., Acta Crystallogr., A43 (1987) 426.

    Google Scholar 

  26. Müller, K., Amman, H.J., Doran, D.M., Gerber, P.R., Gubernator, K. and Schrepfer, G., In Van der, Goot, H., Domany, G., Pallos, L. and Timmerman, H. (Eds.) Trends in Medical Chemistry, Vol. 88 (Use of Computer Modeling and Structural Databases in Pharmaceutical Research). Elsevier, Amsterdam, 1989, pp. 1–12.

    Google Scholar 

  27. Müller, K., Amman, H.J., Doran, D.M., Gerber, P.R., Gubernator, K. and Schrepfer, G., Bull. Soc. Chim. Belg., 97 (1988) 655.

    Google Scholar 

  28. Sundberg, R.J. and Martin, R.B., Chem. Rev., 74 (1974) 471.

    Google Scholar 

  29. Sigel, H. and Martin, R.B., Chem. Rev., 82 (1982) 385.

    Google Scholar 

  30. Bryce, G.F., Roeske, R.W. and Gurd, F.N., J. Biol. Chem., 240 (1965) 3837.

    Google Scholar 

  31. Martin, R.B., Chamberlin, M. and Edsall, J.T., J. Am. Chem. Soc., 82 (1960) 495.

    Google Scholar 

  32. Freeman, H.C., Guss, J.M. and Sinclair, R.L., J. Chem. Soc. Chem. Commun., (1968) 485.

  33. Kim, M.K. and Martell, A.E., J. Am. Chem. Soc., 89 (1967) 5138.

    Google Scholar 

  34. Martin, R.B. and Edsall, J.T., J. Am. Chem. Soc., 82 (1960) 1107.

    Google Scholar 

  35. Margerum, D.W. and Rosen, H.M., J. Am. Chem. Soc., 89 (1967) 1088.

    Google Scholar 

  36. Jones, J.P., Billo, E.J. and Margerum, D.W., J. Am. Chem. Soc., 92 (1970) 1875.

    Google Scholar 

  37. Blakeley, R.L., Dixon, N.E. and Zerner, B., Biochim. Biophys. Acta, 744 (1983) 219.

    Google Scholar 

  38. Dixon, R.E., Gazzola, C., Asher, C.J., Lee, D.S.W., Blakeley, R.L. and Zerner, B., Can. J. Biochem., 58 (1980) 474.

    Google Scholar 

  39. Blakeley, R.L., Webb, E.C. and Zerner, B., Biochemistry, 8 (1969) 1984.

    Google Scholar 

  40. Dixon, N.E., Gazzola, C., Blakeley, R.L. and Zerner, B., J. Am. Chem. Soc., 97 (1975) 4131.

    Google Scholar 

  41. Williams, R.J.P., J. Mol. Catalysis, Review Issue (1986), pp. 1–27.

  42. Hardman, K.D. and Lipscomb, W.N., J. Am. Chem. Soc., 106 (1984) 463.

    Google Scholar 

  43. Andrews, R.K., Dexter, A., Blakeley, R.L. and Zerner, B., J. Am. Chem. Soc., 108 (1986) 7124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, R., Müller, K. Molecular modeling studies on the urease active site and the enzyme-catalyzed urea hydrolysis. J Computer-Aided Mol Des 4, 355–367 (1990). https://doi.org/10.1007/BF00117401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117401

Key words

Navigation