Skip to main content
Log in

From Molecular Diversity to Template-Directed Self-Assembly – New Trends in Metallo-Supramolecular Chemistry

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Molecular diversity can easily be generated in metallo-supramolecular systems by simple mixing of oligodentate ligands and appropriate metal ions. In this reaction either a defined coordination compound is formed in a selective self-assembly process or a mixture is obtained. Depending on the system such a mixture can possess a statistical distribution of components or the formation of some species is thermodynamically favored leading to only a few out of several possible compounds (or in the extreme to only one). Simple well-defined mixtures containing only a few components or pure supramolecular aggregates can be generated from sequential or directional ligands, from mixtures of ligands and/or metals, and by introducing templates which support the formation of defined metallo-supramolecular aggregates. In the latter case it is possible first to generate a mixture of components which are in dynamic equilibrium (dynamic combinatorial library). In a second step, a template can be added, which in a dynamic process transforms such a library into one well-defined species. Thus, the initial generation of molecular diversity allows in a subsequent selection step in an evolutionary process the formation of the most favored receptor/substrate adduct (``dynamic combinatorial chemistry'').

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Pedersen: J. Am. Chem. Soc. 89, 7017 (1967); (b) C. J. Pedersen: Angew. Chem. 100, 1053 (1988); Angew. Chem. Int. Ed. 27, 1021 (1988).

    Google Scholar 

  2. R. G. Chapman and J. C. Sherman: J. Am. Chem. Soc. 117, 9081 (1995).

    Google Scholar 

  3. 3. E.g.: (a)_ G. von Kiedrowski: Angew. Chem. 98, 932 (1986); Angew. Chem. Int. Ed. 25, 932 (1986); (b) W. S. Zielinski and L. E. Orgel: Nature 327, 346 (1987); (c) M. M. Conn, E. A. Wintner, and J. Rebek (Jr.): Angew. Chem. 106, 1665 (1994); Angew. Chem. Int. Ed. 33, 1577 (1994).

    Google Scholar 

  4. R. G. Chapman and J. C. Sherman: Tetrahedron 53, 15911 (1997).

    Google Scholar 

  5. Special issue on combinatorial chemistry: Chem. Rev. 97(2), (1997).

  6. <nt>E.g.</nt>: M. Famulok and J. W. Szostak: Angew. Chem. 104, 1001 (1992); Angew. Chem. Int. Ed. 31, 979 (1992).

    Google Scholar 

  7. P. A. Bradey and J. K. M. Sanders: Chem. Soc. Rev. 26, 327 (1997); (b) A. Ganesan: Angew. Chem. 110, 2989 (1998); Angew. Chem. Int. Ed. 37, 2828 (1998).

    Google Scholar 

  8. C. Mikulka, N. Windhab, G. Quinkert, and A. Eschenmoser (Hoechst AG): German patent 196 19 373.7 (1996).

  9. M. C. Calama, R. Hulst, R. Fokkens, N. M. M. Nibbering, P. Timmerman, and D. N. Reinhoudt: J. Chem. Soc. Chem. Commun. 1021 (1998).

  10. I. Huc and J.-M. Lehn: Proc. Natl. Acad. Sci. USA 94, 2106 (1997).

    Google Scholar 

  11. H. Hioki and W. C. Still: J. Org. Chem. 63, 904 (1998).

    Google Scholar 

  12. B. Klekota, M. H. Hammond, and B. L. Miller: Tetrahedron Lett. 50, 8639 (1997); (b) S. Sakai, Y. Shigemasa, and T. Sasaki: Tetrahedron Lett. 38, 8145 (1997).

    Google Scholar 

  13. M. S. Goodman, V. Jubian, and A. D. Hamilton: Terahedron Lett. 36, 2551 (1995).

    Google Scholar 

  14. J.-M. Lehn: Supramolecular Chemistry, VCH (1995); (b) C. O. Dietrich-Buchecker and J.-P. Sauvage in V. Balzani, L. D. Cola (eds.): Supramolecular Chemistry, pp 259–278, Kluwer (1992).

  15. S. Anderson, H. L. Anderson, and J. K. M. Sanders: Acc. Chem. Res. 26, 469 (1993).

    Google Scholar 

  16. E. C. Constable: Prog. Inorg. Chem. 42, 67 (1994); (b) A. F. Williams: Eur. J. Chem. 3, 15 (1997); (c) C. Piguet, G. Bernardinelli, and G. Hopfgartner: Chem. Rev. 97, 2005 (1997); (d) M. Albrecht: Chem. Soc. Rev. 27, 281 (1998).

    Google Scholar 

  17. J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, and D. Moras: Proc. Natl. Acad. Sci. USA 84, 2565 (1987).

    Google Scholar 

  18. E. C. Constable, F. R. Heirtzler, M. Neuburger, and M. Zehnder: J. Chem. Soc. Chem. Commun. 933 (1996); (b) E. C. Constable, F. R. Heirtzler, M. Neuburger, and M. Zehnder: J. Am. Chem. Soc. 119, 5606 (1997).

  19. E. C. Constable, T. Kulke, M. Neuburger, and M. Zehnder: J. Chem. Soc. Chem. Commun. 489 (1997).

  20. M. Albrecht: Chem. Eur. J. 3, 1466 (1997).

    Google Scholar 

  21. B. Kersting, M. Meyer, R. E. Powers, and K. N. Raymond: J. Am. Chem. Soc. 118, 7221 (1996); (b) M. Meyer, B. Kersting, R. E. Powers, and K. N. Raymond: Inorg. Chem. 36, 5179 (1997).

    Google Scholar 

  22. C. Piguet, G. Hopfgartner, A. F. Williams, and J.-C. G. Bünzli: J. Chem. Soc. Chem. Commun. 491 (1995).

  23. C. Piguet, G. Bernardinelli, J.-C. G. Bünzli, S. Petoud, and G. Hopfgartner: J. Chem. Soc. Chem. Commun. 2575 (1995).

  24. C. Piguet, E. Rivara-Minten, G. Bernardinelli, J.-C. G. Bünzli, and G. Hopfgartner: J. Chem. Soc. Dalton Trans. 421 (1997)

  25. C. Piguet, J.-C. G. Bünzli, G. Bernardinelli, G. Hopfgartner, S. Petoud, and O. Schaad: J. Am. Chem. Soc. 118, 6681 (1996); (b) C. Edder, C. Piguet, J.-C. G. Bünzli, and G. Hopfgartner: J. Chem. Soc. Dalton Trans. 4657 (1997).

    Google Scholar 

  26. M. Albrecht and R. Fröhlich: J. Am. Chem. Soc. 119, 1656 (1997); (b) M. Albrecht, K.Witt, and O. Blau: J. Prakt. Chem. 340, 562 (1998).

    Google Scholar 

  27. V. C. M. Smith and J.-M. Lehn: J. Chem. Soc. Chem. Commun. 2733 (1996).

  28. R. Noyori and M. Kitamura: Angew. Chem. 103, 34 (1991); Angew. Chem. Int. Ed. 30, 49 (1991); (b) for a recent review see: C. Girard and H. B. Kagan: Angew. Chem. 110, 3088 (1998); Angew. Chem. Int. Ed. 37, 2922 (1998).

    Google Scholar 

  29. M. A. Masood, E. J. Enemark, and T. D. P. Stack: Angew. Chem. 110, 973 (1998); Angew. Chem. Int. Ed. 37, 928 (1998).

    Google Scholar 

  30. B. Hasenknopf, J.-M. Lehn, G. Baum, and D. Fenske: Proc. Natl. Acad. Sci. USA 93, 1397 (1996).

    Google Scholar 

  31. R. Krämer, J.-M. Lehn, and A. Marquis-Rigault: Proc. Natl. Acad. Sci. USA 90, 5394 (1993); (b) R. Stiller and J.-M. Lehn: Eur. J. Inorg. Chem. 977 (1998).

    Google Scholar 

  32. D. L. Caulder and K. N. Raymond: Angew. Chem. 109, 1508 (1997); Angew. Chem. Int. Ed. 36, 1440 (1997).

    Google Scholar 

  33. M. Albrecht, M. Schneider, and H. Röttele: Angew. Chem. 111, 512 (1999); Angew. Chem. Int. Ed. 38, 557 (1999).

    Google Scholar 

  34. Review: B. Olenyuk, A. Fechtenkötter, and P. J. Stang: J. Chem. Soc. Dalton Trans. 1707 (1998).

  35. P. N. W. Baxter, J.-M. Lehn, and K. Rissanen: J. Chem. Soc. Chem. Commun. 1323 (1997).

  36. R. Krämer, J.-M. Lehn, A. De Cian, and J. Fischer: Angew. Chem. 105, 764 (1993); Angew. Chem. Int. Ed. 32, 703 (1993).

    Google Scholar 

  37. B. Hasenknopf, J.-M. Lehn, N. Boumediene, A. Dupont-Gervais, A. Van Dorsselaer, B. Kneisel, and D. Fenske: J. Am. Chem. Soc. 119, 10956 (1997).

    Google Scholar 

  38. O. Mamula, A. von Zelewsky, and G. Bernardinelli: Angew. Chem. 110, 302 (1998); Angew. Chem. Int. Ed. 37, 290 (1998).

    Google Scholar 

  39. P. L. Jones, K. J. Byrom, J. C. Jeffery, J. A. McCleverty, and M. D. Ward: J. Chem. Soc. Chem. Commun. 1361 (1997).

  40. P. J. Stang: Chem. Eur. J. 4, 19 (1998); (b) R.W. Saalfrank and I. Bernt: Current Opinion in Solid State and Mater. Sci. 3, 407 (1998), and references cited therein.

    Google Scholar 

  41. <nt>E.g.</nt>: R. W. Saalfrank, B. Hörner, D. Stalke, and J. Salbeck: Angew. Chem. 105, 1223 (1993); Angew. Chem. Int. Ed. 32, 1179 (1993).

    Google Scholar 

  42. D. L. Caulder, R. E. Powers, T. N. Parac, and K. N. Raymond: Angew. Chem. 110, 1845 (1998); Angew. Chem. Int. Ed. 37, 1840 (1998).

    Google Scholar 

  43. M. Fujita, O. Sasaki, T. Mitsuhashi, T. Fujita, J. Yazaki, K. Yamaguchi, and K. Ogura: J. Chem. Soc. Chem. Commun. 1535 (1996); (b) S. B. Lee, S. Hwang, D. S. Chung, H. Yun, and J.-I. Hong: Tetrahedron Lett. 39, 873 (1998).

  44. A. Bilyk and M. M. Harding: J. Chem. Soc. Chem. Commun. 1697 (1995); (b) M. A. Houghton, A. Bilyk, M. M. Harding, P. Turner, and P. W. Hambley: J. Chem. Soc. Dalton Trans. 2725 (1997).

  45. D. Philp and J. F. Stoddart: Angew. Chem. 108, 1243 (1996); Angew. Chem. Int. Ed. 35, 1154 (1996).

    Google Scholar 

  46. R. W. Saalfrank, I. Bernt, E. Uller, and F. Hampel: Angew. Chem. 109, 2596 (1997); Angew. Chem. Int. Ed. 36, 2482 (1997).

    Google Scholar 

  47. M. Albrecht and S. Kotila: J. Chem. Soc. Chem. Commun. 2309 (1996); for the definition of the term meso-helicate see: M. Albrecht and C. Riether: Chem. Ber. 129, 829 (1996).

  48. M. Albrecht and O. Blau: Synthesis 213 (1997).

  49. M. Albrecht and O. Blau: J. Chem. Soc. Chem. Commun. 345 (1997); (b) M. Albrecht, O. Blau, and R. Fröhlich: Chem. Eur. J. 5, 48 (1999).

  50. M. Albrecht and O. Blau: unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, M. From Molecular Diversity to Template-Directed Self-Assembly – New Trends in Metallo-Supramolecular Chemistry. Journal of Inclusion Phenomena 36, 127–151 (2000). https://doi.org/10.1023/A:1008066616875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008066616875

Navigation