Skip to main content
Log in

The strength of hybrid glass/carbon fibre composites

Part 2 A statistical model

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

When carbon fibre is combined with less-stiff higher-elongation glass fibre in a hybrid composite an enhancement of the failure strain of the carbon fibre reinforced phase is observed. This “hybrid effect” is only partially accounted for by internal compressive strains induced by differential thermal contraction during fabrication. The predominant factor is shown to be a relationship between the strength and effective bundle size of the carbon fibre ligaments which is a consequence of the statistical distribution of strengthreducing flaws in the carbon fibres. A lamina or ligament (bundle) of carbon fibres fails when there is a local critical accumulation of fibre fractures. A model based on this concept is used to relate the two-parameter Weibull strength distribution of the carbon fibre reinforced composite phase to that of single carbon fibres. The model suggests that the critical number of fibre fractures is of the order of 3, and experimental observations of the failure process support this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFP:

carbon fibre reinforced phase

cfrp:

carbon fibre reinforced plastic

grp:

glass fibre reinforced plastic

Λ:

gamma function

σ :

stress

P :

probability

w :

Weibull shape parameter

σ 0 :

Weibull scale parameter

L :

length

m :

number of links in a chain of bundles

n :

number of fibres in a bundle

i :

number of fibre fractures in a group which leads to catastrophic fracture

f:

failure

s:

survival

m :

chain of m links

n :

bundle of n fibres

L :

links of length L

References

  1. P. W. Manders and M. G. Bader, J. Mater. Sci. 16 (1981) 2233.

    Google Scholar 

  2. R. Morton, PhD Thesis, University of Surrey (1977).

  3. J. D. H. Huges, H. Morley and E. E. Jackson, J. Phys. D, Appl. Phys. 13 (1980) 921.

    Google Scholar 

  4. B. D. Coleman, J. Mech. Phys. Sol. 7 (1958) 60.

    Google Scholar 

  5. D. Gücer and J. Gurland, ibid, 10 (1962) 365.

    Google Scholar 

  6. B. W. Rosen, J. AIAA. 2 (1964) 1985.

    Google Scholar 

  7. C. Zweben, ibid. 6 (1968) 2325.

    Google Scholar 

  8. C. Zweben and B. W. Rosen, J. Mech. Phys. Sol. 18 (1970) 189.

    Google Scholar 

  9. B. W. Rosen, Proc. Roy. Soc. Lond. A. 319 (1970) 79.

    Google Scholar 

  10. B. W. Rosen and C. H. Zweben. NASA CR-2057, 1972.

  11. C. Zweben, Eng. Fract. Mech. 4 (1972) 1.

    Google Scholar 

  12. P. M. Scop and A. S. Argon, Conference Proceedings of Advanced Fibrous Reinforced Composites, (SAMPE, San Diego, Calif. 1966).

    Google Scholar 

  13. Idem, J. Comp. Mater. 3 (1969) 30.

    Google Scholar 

  14. A. S. Argon, in “Composite Materials: Fracture and Fatigue”, Vol. 5, edited by L. J. Broutman (Academic Press, London and New York) p. 153.

  15. D. G. Harlow and L. S. Phoenix, J. Comp. Mater. 12 (1978) 195, 314.

    Google Scholar 

  16. S. B. Batdorf, private communication, 1980.

  17. J. Aveston and J. M. Sillwood, J. Mater. Sci. 11 (1976) 1877.

    Google Scholar 

  18. M. G. Bader and P. W. Manders, Proceedings of the 2nd International Conference on Composite Materials, (AIME, New York, 1978) pp. 1147–65.

    Google Scholar 

  19. J. M. Hedgepeth, NASA Technical note D-882, 1961.

  20. J. M. Hedgepeth and P. Van-Dyke, J. Comp. Mater, 1 (1967) 294.

    Google Scholar 

  21. P. Van-Dyke and J. M. Hedgepeth, Textile Res. J. 39 (1969) 619.

    Google Scholar 

  22. W. L. Ko, J. Comp. Mater. 12 (1978) 97.

    Google Scholar 

  23. C. Zweben, J. Mater. Sci. 12 (1977) 1325.

    Google Scholar 

  24. P. W. Manders, PhD Thesis, University of Surrey, 1979.

  25. Idem, Nature 271 (1978) 142.

    Google Scholar 

  26. R. L. Smith, Proc. Roy. Soc. A372 (1980) 539.

    Google Scholar 

  27. D. G. Harlow and S. L. Phoenix, Int. J. Fracture 15 (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manders, P.W., Bader, M.G. The strength of hybrid glass/carbon fibre composites. J Mater Sci 16, 2246–2256 (1981). https://doi.org/10.1007/BF00542387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00542387

Keywords

Navigation