Skip to main content
Log in

Modes of deformation in rubber-modified thermoplastics during tensile impact

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Real-time small-angle X-ray scattering (RTSAXS) studies were performed on a series of rubber-modified thermoplastics. Scattering patterns were measured at successive time intervals as short as 1.8 ms and were analysed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample allowed the total plastic strain to be computed. The plastic strain due to other deformation mechanisms, e.g. particle cavitation and macroscopic shear deformation was determined by the difference. Samples of commercial thicknesses can be studied at high rates of deformation without the inherent limitations of microscopy and its requirement of thin samples (i.e., plane strain constraint is maintained on sample morphology).

Contrary to the conclusions drawn from many previous dilatation-based studies, it has been demonstrated that the strain due to non-crazing mechanisms, such as rubber particle cavitation, and deformation of the glassy ligaments between rubber particles, occurs before that due to crazing mechanisms. Crazing accounts for at most only half of the total plastic strain in HIPS (high impact polystyrene) and ABS (rubber-modified styrene-acrylonitrile copolymer) materials. The proportion of strain attributable to crazing can be much less than half the total in thermoplastic systems with considerable shear yield during plastic deformation.

The predominant deformation mechanism in polycarbonate-ABS blends is shear in the PC (polycarbonate) with associated rubber gel particle cavitation in the ABS. This cavitation means that there appears to be a direct relationship between gel particle rubber content in the ABS and toughness of the blend. The mechanism is the same whether the tensile stress is in the direction parallel or perpendicular to the injection-moulded orientation, with simply less total strain being reached before fracture in the weaker perpendicular direction. Crazing, although the precursor to final fracture, occurs after the predominant mechanism and contributes only a few per cent to the total plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Bubeck, J. A. Blazy, E. J. Kramer, D.J. Buckley Jr., andH. R. Brown,Polym. Commun. 27 (1986) 357.

    CAS  Google Scholar 

  2. Idem., Mater. Res. Soc. Symp. Proc. 79 (1987) 293.

    CAS  Google Scholar 

  3. C. B. Bucknall andD. Clayton,J. Mater. Sci. 7 (1972) 202.

    CAS  Google Scholar 

  4. C. B. Bucknall, D. Clayton andW. E. Keast,ibid. 7 (1972) 1443.

    CAS  Google Scholar 

  5. Idem., ibid. 8 (1973) 514.

    Article  CAS  Google Scholar 

  6. C. B. Bucknall andI. C. Drinkwater,ibid. 8 (1973) 1800.

    Article  CAS  Google Scholar 

  7. C. B. Bucknall andW. W. Stevens,ibid. 15 (1980) 2950.

    Article  CAS  Google Scholar 

  8. C. B. Bucknall andC. J. Page,J. Mater. Sci. 17 (1982) 808.

    Article  CAS  Google Scholar 

  9. C. B. Bucknall, I. K. Partridge andM. V. Ward,ibid. 19 (1984) 2064.

    Article  CAS  Google Scholar 

  10. C. B. Bucknall andS. E. Reddock,ibid. 20 (1985) 1434.

    Article  CAS  Google Scholar 

  11. C. B. Bucknall, F. F. P. Cote andI. K. Partridge,ibid. 21 (1986) 301.

    CAS  Google Scholar 

  12. C. B. Bucknall, P. Davies andI. K. Partridge,ibid. 21 (1986) 307.

    CAS  Google Scholar 

  13. Idem, ibid. 22 (1987) 1341.

    Article  CAS  Google Scholar 

  14. C. B. Bucknall, “Toughened Plastics” (Applied Science, London (1977), Ch. 7 and 8.

    Google Scholar 

  15. C. B. Bucknall, C. J. Page andV. O. Young, in “Toughness and Brittleness of Plastics”, edited by R. D. Deanin and A. M. CrugnolaAdv. Chem. 154) (American Chemical Society, Washington, DC, (1976) Ch. 15.

    Google Scholar 

  16. M. A. Maxwell andA. F. Yee,Polym. Engng Sci. 21 (1981) 205.

    Article  CAS  Google Scholar 

  17. P. J. Fenelon andJ. R. Wilson,ibid. 15, Ch. 20.

    Google Scholar 

  18. E. Parades andE. W. Fischer,Makromol. Chem. 180 (1979) 2707.

    Google Scholar 

  19. H. R. Brown andE. J. Kramer,J. Macromol. Sci.-Phys.,19B (1981) 487.

    Google Scholar 

  20. D. J. Buckley, Jr., E. J. Kramer, R. A. Bubeck andH. R. Brown, to be submitted for publication.

  21. E. R. Moore, ed., in “Encyclopedia of Polymer Engineering and Science”, 2nd Edn, Vol. 16 (John Wiley, Chichester, 1989) pp. 1–246.

    Google Scholar 

  22. H.-J. Sue andA. F. Yee,J. Mater. Sci. 24 (1989) 1447.

    Article  CAS  Google Scholar 

  23. P. J. Mills, H. R. Brown andE. J. Kramer,ibid. 20 (1985) 4413.

    CAS  Google Scholar 

  24. A. M. Donald andE. J. Kramer,ibid. 17 (1982) 1871.

    CAS  Google Scholar 

  25. H. Breuer, J. Stabenow andF. Haaf, International Conference on Toughened Plastics (Plastics and Rubber Institute, London, 1978) Paper 13.

    Google Scholar 

  26. R. A. Bubeck andD. J. Moll, Unpublished results.

  27. D. G. Gilbert andA. M. Donald,J. Mater. Sci. 21 (1986) 1819.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubeck, R.A., Buckley, D.J., Kramer, E.J. et al. Modes of deformation in rubber-modified thermoplastics during tensile impact. J Mater Sci 26, 6249–6259 (1991). https://doi.org/10.1007/BF02387801

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02387801

Keywords

Navigation